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Collision Avoidance in the ATM Problem:
A Mixed Integer Linear Optimization Approach

A. Alonso-Ayuso, L. F. Escudero, F.J. Martin-Campo

Abstract—This paper tackles the collision avoidance problem
in ATM. The problem consists in deciding the best strategy
for new aircraft configurations (velocity and altitude changes)
such that all conflicts in the airspace are avoided; a conflict
being the loss of the minimum safety distance that has to be
kept between two aircrafts. A mixed 0-1 linear optimization
model based on geometric transformations for collision avoidance
between an arbitrary number of aircrafts in the airspace is
developed. Knowing initial coordinates, angle direction and level
flight, the new configuration for each aircraft is established by
minimizing several objectives like velocity variation and total
number of changes (velocity and altitude), and forcing to return
to the original flight configuration when no aircrafts are in
conflict. Due to the small computational time for the execution,
the new configuration approach can be used in real time by using
optimization software.

Index Terms—Air traffic management, collision avoidance,
mixed integer linear optimization.

I. I NTRODUCTION

A TM is currently based on prefixed routes that pilots have
to follow according with a certain flight plan. Next years

aim is extending the airspace considering “Free Flight”, where
pilots and airlines can decide freely on the control of the flight,
keeping in touch with air traffic controllers. To preserve safety
in air flights, the Conflict Resolution Problem has been studied
deeply from different points of view.

On a recent paper by EUROCONTROL [1], aimed to
specify the required capabilities of Medium-Term Conflict
Detection (MTCD) for Air Traffic Management Systems, the
MTCD system is required to detect and notify the controller
about the probable loss of the required separation between
two aircrafts, an aircraft penetrating restricted airspace, or
an aircraft blocking airspace that might have been used by
some other one. That paper considers that, although flight
data and trajectories are provided to the MTCD, some un-
certainty is likely to be on the trajectories. It distinguishes
too between tactical and planned trajectories. Kuchar and
Yang (2000) [2] and references therein present a survey of
conflict, detection and resolution modeling methods with their
own classification. Obstacle avoidance using the linearized
constrained Uninhabited Aerial Vehicle (UAV) dynamic has
been modeled by Richards and How (2002) [3]. According
with these authors the Centralized Model Predictive Control
has been widely developed for constrained systems with many
results concerning robustness and it has also been applied to
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the co-operative control of multiple vehicles. By augmenting
the system with a binary “target state” indicating whether
the target set is reached or not, the authors end up with a
hybrid system at hand. Task completion is then guaranteed
by imposing a hard terminal equality constraint on the target
state. Dell’Olmo and Lulli (2003) [4] describe a model that
is solved by using exact optimization software combined with
an heuristic approach for large problems. Christodoulou and
Costoulakis (2004) [5] propose a Mixed Integer Nonlinear
Optimization approach to solve the conflict problem. Their
method allows velocity changes and heading angle control to
solve all potential conflicts by only using standard optimiza-
tion software, but it may require more computational effort
than what it could be affordable.

The main contribution of this paper is based on the VC
(Velocity Changes) model proposed by Pallottino [6] and
Pallottino, Feron and Bicchi (2002) [7]. See also [8]. This
model considers instantaneous changes. The main extensions
to the VC model are as follows: (1) Different safety radius
are considered since the safety radius for an aircraft can be
adjusted differently. This feature can be applied to include
the wind factor in the model, extending the safety radius
if bad weather conditions are existing; (2) Altitude changes
are allowed to avoid infeasible situations in the VC problem
caused by the velocity bounds, or “head to head” conflict
situations; (3) All changes in the aircrafts configurationsare
updated since aircrafts with higher number of changes will be
penalized for the equitable distribution of the maneuvers;(4)
All aircrafts will be forced to return to the initial configuration
when the conflict situations are avoided; and (5) the case dis-
cussed in [7] where the denominator is zero, causing physical
collisions between the corresponding aircrafts, is avoided in
our proposed model. For this purpose a mixed integer linear
optimization (MILO) is proposed. The required computing
time for optimizing realistic sets of aircrafts in conflict is so
small that the approach can be used in real time operations.

This paper is organized as follows: In Section II the general
features of the problem required to build the MILO model
are described as well as some changes in the VC model.
In Section III the formulation of our proposed model is
developed. Section IV presents the full problem formulation
as well as the dimensions of the model. Section V reports
the results of the computational experimentation to verifythe
efficiency of the proposal and its application in real time.
Finally, Section VI presents some conclusions and the main
lines of future research.
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II. PROBLEM STATEMENT

Aerial sectors and a given numberF of aircrafts flying in
an aerial sector as well as their configurations are considered.
An aerial sector being an airspace portion supervised by an
ATC.

Next, all elements concerning velocity and altitude changes
model (VAC) are detailed:
Sets

F , set of aircrafts in the sector(1, . . . , F ).
Zf , set of admissible flight levels for aircraftf ∈ F ,

(1, . . . , Z)

Parameters

xf , yf ,the position (abscissa and ordinate) of aircraftf , for
f ∈ F .

zf , initial flight level in the current execution for aircraft
f , for f ∈ F .

z∗f , initial flight level configuration for aircraftf , for f ∈
F .

vf , initial velocity in the current execution for aircraftf ,
for f ∈ F .

v∗f , initial velocity configuration for aircraftf , for f ∈
F .

v̂f , optimal velocity configuration to arrive at the desti-
nation sector point at the predicted time for aircraft
f , for f ∈ F .

tp, current time for aircraftf , for f ∈ F .
vf , vf ,minimum and maximum velocity allowed for each

aircraft f , respectively, forf ∈ F .
m∗

f , initial direction of motion in(−π, π] for aircraft f ,
for f ∈ F . See theθ parameter in [7].

rf , safety radius for each aircraft, usually 2.5 nautical
miles for f ∈ F . This parameter will be used to
consider different safety radii for each aircraft.

hthij , 0-1 parameter that determines if there is a “head to
head” conflict for aircraftsi, j, for i < j ∈ F . This
parameter is obtained in preprocessing.

scij , 0-1 parameter that determines if two aircraftsi and
j have the same coordinatesx andy, for i < j ∈ F .
This parameter is obtained in preprocessing.

pcij , 0-1 parameter that determines if there is a “patholog-
ical case” between aircraftsi, j, for i < j ∈ F ; see
below. This parameter is obtained in preprocessing.

pij , 0-1 parameter that determines if the intersection
point between the aircraft trajectories for aircrafts
i, j, for i < j ∈ F , is less than a fixed distancee.
This parameter is obtained in preprocessing.

r, random angle used if it is necessary a rotation
transformation for the airspace.

nv
f , na

f number of changes in velocity and in altitude in
the sector for aircraftf until the new execution,
respectively, forf ∈ F .

Variables

qf , velocity variation for aircraftf , for f ∈ F . This
variable is real, and we divide it in two nonnegative
variables, say,q+

f andq−f , such thatqf = q+
f −q−f as

traditional in optimization, whereq+
f andq−f are the

positive and negative velocity variation for aircraft
f , for f ∈ F .

νz
f , 0-1 variable that takes value 1 if aircraftf is at

altitude levelz at the end of the current execution,
for f ∈ F , z ∈ Zf and, otherwise, it is zero.

af , 0-1 variable that takes value 1 if aircraftf changes
its velocity at the end of the current execution for
aircraft f in the sector, forf ∈ F and, otherwise, it
is zero.

bf , 0-1 variable that takes value 1 if aircraftf changes
its altitude at the end of the current execution for
aircraft f , for f ∈ F , and, otherwise, it is zero.

ρf , nonnegative integer variable that shows the number
of levels that the aircraftf ascends or descends, for
f ∈ F .

βf , auxiliary nonnegative continuous variable that model
the absolute value of the difference between current
velocities and initial velocities as a linear function
for aircraft f , for f ∈ F .

δn
ijz auxiliary 0-1 variables to model or-constraint types,

for i, j ∈ F , z ∈ Zi ∪ Zj , n = 1, ..., 5.

The problem consists in avoiding all conflicts in a certain
aerial sector by using a mixed integer linear optimization
formulation. Then, some standard optimization software will
be used to solve this problem.

III. C ONFLICT AVOIDANCE CONSTRAINTS FOR THEVAC
PROBLEM

A solution to the conflict problem does not always exist in
the VC model, since cases such as “head to head” and others in
which the velocity bounds are insufficient to avoid collisions,
cannot be solved by only applying velocity changes. To avoid
these situations, a extension to the VC problem including alti-
tude changes is proposed, resulting in the VAC (Velocity and
Altitude Changes) problem.The VC problem considers that all
aircraft safety radii have the same valuerf = s/2 wheres is
5 nautical miles and, under this assumption builds allα angles
based on symmetric geometry. Considering different safety
radii constitutes a good approximation to the realistic problem,
since each aircraft has a different configuration depending
on the aircraft weight, the aerodynamic configuration, the
aircraft size, etc. When different aircraft radii are considered,
two interior tangent lines to two circumferences have to be
computed as well as one of these two straight lines slope.

Now, obtaining theαij angle is easy by using the archtan-
gent of this slope:

αij = arctan
(

ri+rj√
d2

ij
−(ri+rj)2

)
,

wheredij is the distance between the aircraftsi andj. If it is
preferred, theα angle can be used to calculate the newl angle
or ther angle, see [7], by considering that all safety radii are
the same. If the wind factor only acts in one direction the
previous is also useful to take into account this factor. This
calculation is only valid if the two aircrafts distance is greater
thanri + rj . If the distance is equal tori + rj , the slope tends
to infinity, since there is only one tangent point. If the distance
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is less thanri + rj the two circumferences have a non empty
intersection and only exterior tangent straight lines exist.

With the inclusion of altitude levels, the model of the
VC problem has to be expanded, since it can happen that
two different aircrafts have a conflict in which a velocity
change is insufficient to avoid the conflict situation. However,
if the aircrafts fly at different altitude levels, then therewill
be no a conflict. In order to solve these conflict situations,
altitude changes will be taken into account and, therefore,
some changes in the VC problem will be introduced.

Notice that if altitude changes are considered, theδ vari-
ables in the VC problem have to be modified including the
dimension of the altitude.

Additionally, a new variableδ5
ijz will be included in the

model to avoid infeasible situations that could occur in the
sum of theδ variables constraint in the VC model. This new
variable will take value0 if there is a conflict between the
aircraftsi andj at the same levelz; and it will take value1 if
there is no conflict at the same level between these aircrafts.
The use of this new variable is advantageous in the sense that
it is able to detect infeasible situations given by the velocity
bounds when two different aircrafts are nearby or an aircraft
flies faster than other one, for instance.

All VC model constraints must include the dimensionz in
the δ variables. Also the sum of theδ variables has to be
1. Now, if two different aircrafts fly at different levels, the
variableδ5

ijz will be forced to take value1, i.e., if νz
i + νz

j 6

1 ⇒ δ5
ijz = 1, and if νz

i + νz
j > 2 ⇒ δ5

ijz = 0. Thus, the
inclusion of the following constraints achieves our purpose:

νz
i + νz

j > 2(1 − δ5
ijz) ∀i, j ∈ F : i < j,∀z ∈ Zi ∩ Zj

νz
i + νz

j − 1 6 1 − δ5
ijz ∀i, j ∈ F : i < j,∀z ∈ Zi ∩ Zj.

It is easy to check that ifνz
i +νz

j = 2, then the two aircrafts
fly at the same level and the second constraint forcesδ5

ijz to
take value0. On the other hand, ifνz

i + νz
j 6 1, the two

aircrafts fly at different levels and the first constraint forces
δ5
ijz to take value1.
This argument helps to fix the value of someδ5 variables

and strengths the continuous relaxation of the model. This is
an important aspect in terms of execution time when using
an optimization engine for resolution since it reinforces the
model of the VAC problem and this leads to a faster solution.

The model approach presented in this paper forces flying
aircrafts to lie at different altitude levels in case of a “head
to head” conflict. In a first approach, preprocessing can detect
“head to head” conflicts and then, a parameter namedhth can
be fixed to the value1, while the rest of thehth parameters
shall be fixed to value0. All “head to head” cases between
every pair of aircrafts can be detected in preprocessing and
these cases occur when the following conditions are satisfied
(see Fig. 1):

ω̂ij − αij 6 m∗
i 6 ω̂ij + αij

ω̂ji − αji 6 m∗
j 6 ω̂ji + αji,

where ω̂ij depends in the quadrant on which(xj , yj) lies
considering(xi, yi) centered in the origin. That is,̂ωij = ωij

if it is on the first or on the fourth quadrant;̂ωij = ωij + π

b

b

m∗

i

m∗

j

α

Fig. 1. “Head to head” conflict.

if is on the second one; and̂ωij = ωij − π if is on the third
one. Then, in this situation, the parameterhthij is fixed to 1,
forcing the two involved aircrafts to fly at different altitude
levels, since previously theδ5 variables are fixed to1.

The new altitude configuration will be saved in theν
variables and the following constraint ensures that each aircraft
flies at one and only one level:

∑

z∈Zf

νz
f = 1 ∀f ∈ F . (3)

Now, when a “head to head” conflict occurs, the VAC model
forces the two aircrafts in conflict to have different altitude
levels as follows:

δ5
ijz = 1 if hthij = 1, ∀i, j ∈ F : i < j,∀z ∈ Zi ∩ Zj .

It can occur that two aircrafts have similar coordinates and
they must fly at different altitude levels to avoid collisions. The
parameterscij will take the value1 if the distance between
two different aircrafts is less or equal tori +rj , i.e., the safety
distance, and it is zero otherwise. Theδ5 variables can be fixed
to 1 in preprocessing as follows:

δ5
ijz = 1 if scij = 1, ∀i, j ∈ F : i < j,∀z ∈ Zi ∩ Zj .

These previous constraints are used to fix someδ5 variables
to help speeding up the execution but they are not indispens-
able for the VAC model, since detecting infeasible situations
is autonomous. The two previous constraints can be joined in
one:

δ5
ijz = 1 if hthij + scij > 1,

∀i, j ∈ F : i < j,∀z ∈ Zi ∩ Zj .

The altitude changes are the cheapest ones in terms of fuel
costs, but are the most expensive ones in terms of passenger
comfort. In a first approach, the VAC model could force
to aircrafts to climb or descend only one level. To avoid
possible changes of more than one altitude level the following
constraint is used:

νz
f 6 0 ∀f ∈ F , ∀z ∈ Zf : z 6= zf , z 6= zf ± 1. (4)

The constraint (4) may cause infeasible situations if the
airspace is very busy and only one change in altitude level is
insufficient to solve the problem efficiently. In a busy airspace,
it can occur that the VAC model has infeasible situations when
aircrafts can not change more than one level. In these cases,
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we must allow the aircrafts to change two or more levels, but
forcing these changes to be as small as possible. For this aim,
a new variable sayρf , ∀f ∈ F will be included in the model.
It will store the number of changes that an aircraft climbs or
descends. This number of changes can be greater than one
and it will avoid infeasible situations in a busy airspace. The
number of levels changed by an aircraft can be modeled as
follows:

ρf =
∣∣∣

∑

z∈Zf

zνz
f − zf

∣∣∣.

The first addend gives the new level in which the aircraft
must be after the optimization, since allν variables take value
0 except theν variable in z ∈ Zf in which the aircraft
flies after the execution. The second addend gives the initial
level in which the aircraft flies before the optimization. The
absolute value makes the previous expression positive. Notice
that this function is not linear so it has to be transformed. For
this purpose, the maximum function between the differences∑

z∈Zf zνz
f − zf andzf − ∑

z∈Zf zνz
f is taken. That is,

ρf =
∣∣∣

∑

z∈Zf

zνz
f − zf

∣∣∣ =

max
{ ∑

z∈Zf

zνz
f − zf , zf −

∑

z∈Zf

zνz
f

}
.

The maximum function is also nonlinear but it can be easily
modeled with two additional constraints as follows:

ρf >
∑

z∈Zf

zνz
f − zf ∀f ∈ F (5a)

ρf > zf −
∑

z∈Zf

zνz
f ∀f ∈ F . (5b)

The constraints (5) forceρf to be the maximum between
the two expressions above, becauseρf must be higher or equal
than the two expressions andρf only can be greater or equal
than one expression, except there is no level change. In this
case, both (5a) and (5b) are trivially fulfilled,ρf being zero.
Now, all constraints are linear ones.

In the VAC model, an objective function consists in mini-
mizing the number of velocity and altitude changes executed
by each aircraft. Since the algorithm will be iteratively exe-
cuted updating each aircraft changes number is necessary to
balance the number of maneuvers performed by each aircraft.
In a first approach the velocity changes number will be
counted. With constraints (6), it happens that variableaf takes
value1 if a velocity change occurs and this occurs if|qf | 6= 0.
The absolute value is a nonlinear function and expressing it
as a linear one in the traditional optimization way is required:
|qf | = q+

f +q−f whereq+
f = max{qf , 0} is the positive part of

qf and q−f = max{−qf , 0} is the negative part ofqf . These
two new variables are positive andq+

f + q−f 6= 0 is equivalent
to q+

f + q−f > 0. Thus,

M1(1 − af ) + ε 6 q+
f + q−f ∀f ∈ F (6a)

q+
f + q−f 6 M2af ∀f ∈ F , (6b)

whereM1 = vf−vf is the lower bound ofq+
f +q−f ; M2 = vf−

vf is the lower bound ofaf −nv
f −1 andε is an infinitesimal

parameter. It is easy to see that if there is a velocity changefor
aircraft f ∈ F , thenq+

f + q−f 6= 0, and the second constraint
forcesaf to take the value1. On the other hand, if there is
not a velocity change for aircraftf ∈ F , thenq+

f + q−f = 0,
and the first constraint forcesaf to take the value0.

The next step is changing the value ofbf from 0 to 1 if
there is an altitude change. With the following constraint,the
number of altitude changes is updated:

bf = 1 − ν
zf

f ∀f ∈ F ,

since if aircraftf flies at the same level before and after the
current execution, then the variableνzf

f will take the value1
and the difference will be0, i.e., the aircraft does not change
its altitude level. On the other hand, if the aircraftf flies at
different altitude levels before and after the current execution,
ν

zf

f will be 0 andbf will take value1, i.e., the aircraft changes
its altitude level.

Pathological cases may happen in the VC model, since
null denominators may appear when implicitly computing
the relative velocity tangent vectors in the VC model. These
pathological cases may cause unstable situations in which
conflicts between the involved aircrafts cannot be solved.

One of the most relevant contributions of this paper is
also the treatment of these pathological cases. The proposed
VAC model implicitly detects them in preprocessing. When a
pathological case occurs between aircraftsi andj, the conflict
is sorted out by turning only the motion angles of the involved
aircrafts.

To detect posible pathological cases between two aircrafts
in preprocessing a 0-1 parameter is used. This parameter value
will be one in case the relative velocity tangent vector tends
to infinity and will be zero otherwise. Only pairs of aircrafts
with the same abscissa coordinate are considered. The formal
definition of the parameter being:

pcij =

{
1 if |ωij | > π

2 − αij − 1o

0 otherwise.

All conflicts where the abscissa of the positions is the same for
both of the two aircrafts will be taken into account since there
might be null denominator. In these cases, we turnπ

2 radians
the configuration of these two aircraftsi andj but considering
the same velocity. This parameter will be included in the
VAC model, so that all pathological cases will be avoided,
and detecting the existence of a null denominator and solving
again will not be required, thus reducing computational costs.
When pcij is equal to1, the initial configuration parameters
depending on somem∗

f angle of aircraftsi andj will be turned
π
2 radians. Both constraints in each case of the VC model, are
rewritten as follows:

(vi + qi)
(
cos(m∗

i )(1 − pcij) − sin(m∗
i )pcij

)
−

(vj + qj)
(
cos(m∗

j )(1 − pcij) − sin(m∗
j )pcij

)

6 M ′
m(1 − δn

ijz)

− (vi + qi)
(
hi(1 − pcij) + ĥipcij

)
+

(vj + qj)
(
hj(1 − pcij) + ĥjpcij

)

6 M ′′
m(1 − δn

ijz),
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wherecos(m∗
i + π

2 ) = − sin(m∗
i ), M ′

m = (vi + vj) and ĥi

and ĥj are the new parametershi and hj built by using the
new turned angles. TheM ′′

m value in these constraints will be
as follows:

M ′′
m = (vi|hi| + vj |hj |)(1 − pcij) + (vi|ĥi| + vj |ĥj |)pcij .

Finally, the objective function will be constructed including
all factors and different objectives that are relevant for the
problem. They are detailed below.

First of all, the first objective is minimizing the velocity
changes absolute value, such that velocity changes and an early
arrival or an arrival delay to destination point in each aerial
aircraft sector is smoothed. To make early arrivals or arrival
delays as small as possible, minimizing velocity variations
using the absolute value function to avoid high changes in
the initial flight plan is proposed. This is done as follows

min
∑

f∈F

|qf | = min
∑

f∈F

(cq+

f q+
f + cq−

f q−f ).

Different objectives are considered but with different magni-
tudes. All magnitudes involved in velocity changes expressions
are normalized (between0 and1) as follows:

min
∑

f∈F

( q+
f

vf − vf

+
q−f

vf − vf

)
.

Only q+
f or q−f will take value greater than zero, and the

objective function will make one of these variables equal to
zero. Notice thatvf − vf is the upper bound of a velocity
variation for an aircraftf ∈ F .

In case of a very congested airspace, an aircraft may need
to climb or descend more than one level thus provoking
unfeasible situations. A new term is introduced in the objective
function to avoid unfeasibility. This option is modeled by
adding the following term to the objective function as done
with (5); and constraint (3) will be removed,

min
∑

f∈F

cj
fρf .

Another aspect to minimize is the weighted number of
velocity and altitude changes in each aircraft aerial sector.
Notice that the costs must be crescent to penalize several
changes in the same aircraft. The function is as follows:

min
∑

f∈F

(
cv
f (nv

f + af ) + ca
f (na

f + bf)
)
.

Returning all aircraft configurations to the initial ones,
both in velocity and altitude is desirable. A new term can
be included so that the aircrafts return again to their initial
configurations when they are not in conflict. To model this
term, the difference between the current velocity and the initial
velocity configuration in the initial flight plan is penalized.
A new term can also be included to penalize the difference
between the current level and the initial level configuration
with the ν variable.

The objective relative to return to the initial velocity config-
uration consists in forcing the aircrafts to arrive at the destina-
tion sector point in the predicted time. For this purpose, some

b

b

θf

(xf , yf)0, t0

(xf , yf)1, t1

vf

b
θf

v̂f

(xf , yf)p, tp

Fig. 2. Return to the initial configuration time

observations about geometric constructions are necessary; take
Fig. 2 as support.

The distance between points(x0, y0) and (x1, y1) can be
known in two ways:

dist((xf , yf )0, (xf , yf)1) = vf (t1 − t0)

dist((xf , yf )0, (xf , yf)1) =
√

(x1
f − x0

f )2 + (y1
f − y0

f )2.

Hence,

vf (t1 − t0) =
√

(x1
f − x0

f )2 + (y1
f − y0

f )2.

If by taking a generic point(xf , yf )p in the aircraft tra-
jectory at timetp with velocity v̂f , and substituting it in the
previous expressions, it is obtained

dist((xf , yf )p, (xf , yf )1) = v̂f (t1 − tp)

dist((xf , yf )p, (xf , yf )1) =
√

(x1
f − xp

f )2 + (y1
f − yp

f )2,

where the velocity an aircraft might have to arrive at the des-
tination point in the predicted time is obtained by combining
the previous expressions. Thus,

v̂f =

√
(x1

f − xp
f )2 + (y1

f − yp
f )2

t1 − tp
.

Therefore, the difference between current and optimal ve-
locities to arrive at the destination point in the predictedtime
is penalized as follows:

min
∑

f∈F

|vf + qf − v̂f | = min
∑

f∈F

βf .

This function is non linear, but it can be modeled as a linear
function by using a maximum function like in (5). The addend
can be descomposed asβf = vf +qf −v̂f = (vf +q+

f )−(q−f +
v̂f ), and using it, two additional constraints are necessary:

βf > (vf + q+
f ) − (q−f + v̂f )

βf > (q−f + v̂f ) − (vf + q+
f ).

A term to penalize the difference between the current level
and the initial level configuration is added with theν variable.
An aircraft takes its initial level configuration ifνz∗

f = 1,
therefore, the new objective function will be as follows,

max
∑

f∈F

ν
z∗

f

f = min
∑

f∈F

−ν
z∗

f

f .

Moreover, the objective function terms and some new costs
to model other preferences like fuel consumption can be added.
Also, any linear combination of all them is possible.
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IV. PROBLEM FORMULATION

Next, the full VAC model is presented, where all unstable
situations are considered and solved.

min cq
∑

f∈F

q+
f

vf − vf

+
∑

f∈F

q−f
vf − vf

+ cnj
∑

f∈F

cj
fρf (11)

subject to:

vf 6 vf + qf 6 vf ∀f ∈ F (12)

∀i, j ∈ F : i < j,∀z ∈ Zi ∩ Zj :

(vi + qi)
(
cos(m∗

i )(1 − pcij) − sin(m∗
i )pcij

)
−

(vj + qj)
(
cos(m∗

j )(1 − pcij) − sin(m∗
j )pcij

)

6 (vi + vj)(1 − δ1
ijz) (13)

− (vi + qi)
(
hi(1 − pcij) + ĥipcij

)

+ (vj + qj)
(
hj(1 − pcij) + ĥjpcij

)

6
(
(vi|hi| + vj |hj |)(1 − pcij)

+ (vi|ĥi| + vj |ĥj |)pcij

)
(1 − δ1

ijz) (14)

(vi + qi)
(
cos(m∗

i )(1 − pcij) − sin(m∗
i )pcij

)
−

(vj + qj)
(
cos(m∗

j )(1 − pcij) − sin(m∗
j )pcij

)

6 (vi + vj)(1 − δ2
ijz) (15)

(vi + qi)
(
ki(1 − pcij) + k̂ipcij

)

− (vj + qj)
(
kj(1 − pcij) + k̂jpcij

)

6
(
(vi|ki| + vj |kj |)(1 − pcij)

+ (vi|k̂i| + vj |k̂j |)pcij

)
(1 − δ2

ijz) (16)

− (vi + qi)
(
cos(m∗

i )(1 − pcij) − sin(m∗
i )pcij

)
+

(vj + qj)
(
cos(m∗

j )(1 − pcij) − sin(m∗
j )pcij

)

6 (vi + vj)(1 − δ3
ijz) (17)

(vi + qi)
(
hi(1 − pcij) + ĥipcij

)

− (vj + qj)
(
hj(1 − pcij + ĥjpcij)

)

6
(
(vi|hi| + vj |hj |)(1 − pcij)

+ (vi|ĥi| + vj |ĥj |)pcij

)
(1 − δ3

ijz) (18)

− (vi + qi)
(
cos(m∗

i )(1 − pcij) − sin(m∗
i )pcij

)
+

(vj + qj)
(
cos(m∗

j )(1 − pcij) − sin(m∗
j )pcij

)

6 (vi + vj)(1 − δ4
ijz) (19)

− (vi + qi)
(
ki(1 − pcij) + k̂ipcij

)

+ (vj + qj)
(
kj(1 − pcij) + k̂jpcij

)

6
(
(vi|ki| + vj |kj |)(1 − pcij)

+ (vi|k̂i| + vj |k̂j |)pcij

)
(1 − δ4

ijz) (20)

δ1
ijz + δ2

ijz + δ3
ijz + δ4

ijz + δ5
ijz = 1 − pij (21)

TABLE I
VAC MODEL DIMENSION

Variablesq+
f

: F Variablesq−
f

: F

Variablesνz
f

: FZ Variablesaf : F

Variablesbf : F Variablesρf : F

Variablesβf : F Variablesδn
ijz : 5Z

(F−1)F
2

(a) Number of variables

C. (12): 2F C. (13)-(21):9Z
F (F−1)

2

C. (22): Z F (F−1)
2

C. (23)-(24):ZF (F − 1)
C. (25): 2F C. (26)-(27):2F
C. (28): F C. (29)-(30):2F
C. (31)-(32):2F C. (33)-(34):2F

(b) Number of constraints

∀i, j ∈ F : i < j,∀z ∈ Zi ∩ Zj :

δ5
ijz = 1 if hthij + scij > 1 (22)

νz
i + νz

j > 2(1 − δ5
ijz) (23)

νz
i + νz

j 6 2 − δ5
ijz (24)

∀f ∈ F :
∑

z∈Zf

νz
f = 1 (25)

(vf − vf )(1 − af ) + ε 6 q+
f + q−f (26)

q+
f + q−f 6 (vf − vf )af (27)

1 − ν
zf

f = bf (28)
∑

z∈Zf

zνz
f − zf 6 ρf (29)

zf −
∑

z∈Zf

zνz
f 6 ρf (30)

(vf + q+
f ) − (q−f + v∗f ) 6 βf (31)

(q−f + v∗f ) − (vf + q+
f ) 6 βf (32)

(vf + q+
f ) − (q−f + v̂f ) 6 βf (33)

(q−f + v̂f ) − (vf + q+
f ) 6 βf (34)

∀f ∈ F :

qf ∈ R (35)

q+
f , q−f , βf ∈ R

+ (36)

ρf ∈ Z
+ (37)

∀f, i, j ∈ F : i < j,∀z ∈ Z :

νz
f , af , bf , δ1

ijz , δ
2
ijz , δ

3
ijz , δ4

ijz , δ
5
ijz ∈ {0, 1} (38)

Table I shows the dimension of the VAC model. Notice that
model dimension depends on the objective function of choice.

V. CASE STUDIES

The VAC model has been initially tested with the case
shown in Fig. 3 by using the objective function introduced
above, where velocity variations and the levels that the air-
crafts have to change are minimized. In this objective function
cq+

f = 1, cq−

f = 1 and cj
f = 1, ∀f ∈ F . The parameterpij is

not considered, therefore all pairs of aircrafts are taken into
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Fig. 3. Testing the VAC model. Initial situation

account. Notice that we are consideringF = 33 aircrafts in
possible conflict. Note: There are two aircrafts in each point
(a) and (b).

Fig. 4 depicts the results of applying the VAC model for
collision avoidance in the case shown in Fig. 3 as follows:

• 5 velocity changes have been performed. The dotted
line circles in the figure denote the positive variation of
velocity, and the dashed line circle denotes the negative
variation of velocity. In this case, all velocity changes are
negative (slowdown).

• The points (a) and (b) still have two aircrafts each, but
the conflict has been avoided.

• There are 11 altitude level changes, 4 positive changes
and 7 negative changes, one of which descends two levels.

• The number of constraints, and continuous and 0-1 vari-
ables in the reduced MIP have been 6850, 33 and 3431,
respectively.

• The objective function value is 13.195700.
• The execution time has been 6.77 seconds by using the

optimization engine CPLEX v.11.2 [9] (with the default
options) in the following HW/SW platform: Intel Core
2DUO P8400, 2.26GHz, 2GB RAM; Microsoft Windows
XP Professional SO.

Next, some computational experience for the VAC model
is reported. 25 random simulations are performed for each
dimensional case, and the result averages are presented. Table
II shows the dimensions of the model whereas Table III
shows the most important results. The headings are as follows:
Case: Gives the case configuration: the number of aircrafts
and levels that are considered;m: Number of constraints;
n: Number of variables;nel: Number of nonzero elements;
density: The density of the matrix;m∗: Number of constraints
after preprocessing by CPLEX;n∗: Number of variables after
preprocessing by CPLEX;nel∗: Number of nonzero elements

bb

(-1000,1000) (1000,1000)(0,1000)

(1000,0)

(1000,-1000)(-1000,-1000) (0,-1000)

(-1000,0)

b

b

b
b
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b

b

b b

b

b

b b
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Level III
Level IV

b

b
b

(a) (b)

Fig. 4. Results for the VAC model in case of Fig. 3

TABLE II
DIMENSIONS TABLE.

Case m n nel d m∗ n∗ nel∗ d∗

C020-05 10650 4970 49110 0.0009 3584.0 1697.1 15273.8 0.0025
C020-07 14830 6910 68610 0.0007 4974.8 2347.4 21297.4 0.0018
C020-10 21100 9820 97860 0.0005 7139.3 3343.2 30827.8 0.0013
C025-05 16750 7775 77325 0.0006 5755.6 2673.4 24744.4 0.0016
C025-07 23350 10825 108075 0.0004 7980.8 3691.3 34470.0 0.0012
C025-10 33250 15400 154200 0.0003 11316.9 5221.6 48990.1 0.0008
C030-05 24225 11205 111915 0.0004 8258.3 3797.4 35466.9 0.0011
C030-07 33795 15615 156465 0.0003 11306.5 5197.2 48440.5 0.0008
C030-10 48150 22230 223290 0.0002 16131.2 7374.8 69361.2 0.0006
C035-05 33075 15260 152880 0.0003 11157.7 5105.0 47762.8 0.0008
C035-07 46165 21280 213780 0.0002 15210.6 6967.2 64873.6 0.0006
C035-10 65800 30310 305130 0.0002 21814.2 9958.0 93415.2 0.0004
C040-05 43300 19940 200220 0.0002 14608.1 6642.0 62579.3 0.0006
C040-07 60460 27820 280020 0.0002 20313.0 9204.3 87217.4 0.0005
C040-10 86200 39640 399720 0.0001 28662.4 12995.6 122937.1 0.0003
C045-05 54900 25245 253935 0.0002 19356.2 8688.6 84169.1 0.0005
C045-07 76680 35235 355185 0.0001 25713.6 11605.7 110313.4 0.0004
C045-10 109350 50220 507060 0.0001 37010.2 16649.2 159640.9 0.0003
C050-05 67875 31175 314025 0.0001 22446.6 10161.2 95649.4 0.0004
C050-07 94825 43525 439275 0.0001 32010.0 14388.7 137661.1 0.0003
C050-10 135250 62050 627150 0.0001 45039.8 20250.4 193319.8 0.0002

after preprocessing by CPLEX;density∗: The density of
the matrix after preprocessing by CPLEX;zlp: Value of the
objective function in the continuous linear relaxation;zs:
Value of the bound after performing the cut identification
and appending at node 0;zip: Value of the objective function
for the optimal solution of the problem;GAPlp: zip−zlp

zip
%;

GAPs: zip−zs

zip
%; nb: Number of times that there is branching;

nn: Number of CPLEX branch-and-cut nodes;tlp: Time
(secs.) to obtain thezlp value;ts: Time (secs.) to obtain thezs

value;tip: Time (secs.) to obtain thezip value; tt: Total time
(secs.), that istlp +tip; nc: Total number of cuts performed by
CPLEX. Note: The minimum, average and maximum GAPs
are reported in Table III.

In a realistic case, the number of aircrafts and levels vary
between15 and30 and between1 and10 levels, respectively.
The airspace under consideration has 50x50 squared units
leading to a greater number of conflicts while the dimensions
are increased.
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The first computational observation that can be made in
Table II is the strength of the CPLEX preprocessing by
comparing the columnsm and m∗, n and n∗ and nel and
nel∗. Moreover, the dimensionsm∗ andn∗ are still very big.
In Table III the very small GAP for all the instances can be
observed, showing the tightness of the model. (Notice thatnb
is small for most of the instances) and, then, the elapsed time
is very small.

VI. CONCLUSION

The so-called VAC model, for the resolution of the Collision
Avoidance Problem has been presented. It adds to the VC
model new interesting features, the most important being the
inclusion of altitude changes to avoid infeasible situations
brought by velocity bounds. Also, the VAC model completes
the VC model in the sense that it takes into account null
denominator appearances. This model looks for an equilibrium
in the number of maneuvers for each aircraft, penalizing those
ones with many maneuvers to realize. The elapsed times are
very small and, then, the model could be applied in real time,
helping ATC decision making.
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TABLE III
RESULTS TABLE.

Case zlp zs zip GAPlp GAPs nb nn tlp ts tip tt nc
0.0000 0.0000

C020-05 0.3218 2.0027 2.0682 0.8444 0.0317 3 13.67 0.04 0.23 0.27 0.31 111.0
1.0000 0.4472
0.0000 0.0000

C020-07 0.0932 1.1695 1.2187 0.9235 0.0403 0 0.00 0.05 0.27 0.29 0.34 34.4
1.0000 0.2838
0.1323 0.0000

C020-10 0.0466 1.0644 1.1329 0.9589 0.0605 0 0.00 0.08 0.39 0.46 0.54 24.9
1.0000 0.5857
0.3333 0.0000

C025-05 0.4716 3.6533 3.7547 0.8744 0.0270 1 4.00 0.07 0.44 0.52 0.59 260.1
1.0000 0.1494
0.4260 0.0000

C025-07 0.4069 2.6195 2.7198 0.8504 0.0369 2 6.50 0.09 0.54 0.63 0.72 106.0
1.0000 1.0000
0.0000 0.0000

C025-10 0.2000 1.7422 1.8004 0.8889 0.0324 1 4.00 0.13 0.70 0.76 0.89 77.6
1.0000 0.4877
0.5665 0.0000

C030-05 0.6495 4.1427 4.3408 0.8504 0.0456 4 15.50 0.10 0.76 1.02 1.12 299.6
1.0000 0.2257
0.2810 0.0000

C030-07 0.4721 2.8227 3.0019 0.8427 0.0597 2 15.50 0.14 0.85 1.10 1.23 116.8
1.0000 0.5541
0.3480 0.0000

C030-10 0.2056 2.3050 2.4116 0.9148 0.0442 3 5.67 0.19 1.19 1.41 1.60 125.8
1.0000 0.3113
0.5543 0.0000

C035-05 0.8585 5.1918 5.3918 0.8408 0.0371 2 42.00 0.14 1.28 1.77 1.91 351.3
1.0000 0.1213
0.6030 0.0000

C035-07 0.8540 4.7520 4.9595 0.8278 0.0418 5 44.80 0.19 1.41 1.84 2.03 271.0
1.0000 0.1971
0.0000 0.0000

C035-10 0.2207 3.2340 3.4276 0.9356 0.0565 3 19.00 0.28 1.88 2.34 2.62 141.3
1.0000 0.1739
0.6049 0.0000

C040-05 1.3807 7.3087 7.7402 0.8216 0.0558 13 57.15 0.19 2.10 3.99 4.17 574.2
1.0000 0.2271
0.5251 0.0000

C040-07 0.9005 5.8852 6.1063 0.8525 0.0362 6 23.33 0.26 2.06 2.64 2.90 262.3
1.0000 0.1304
0.6212 0.0000

C040-10 0.4185 4.5220 4.6666 0.9103 0.0310 4 21.00 0.38 2.75 3.31 3.69 288.9
1.0000 0.1723
0.5458 0.0016

C045-05 1.7200 9.2311 9.8711 0.8258 0.0648 17 143.06 0.26 3.15 8.62 8.87 1104.1
1.0000 0.1518
0.7099 0.0000

C045-07 0.6227 6.8541 7.2115 0.9137 0.0496 8 101.13 0.35 3.15 5.26 5.61 280.0
1.0000 0.2224
0.6041 0.0000

C045-10 0.4042 4.5718 4.7658 0.9152 0.0407 4 8.00 0.49 3.89 4.90 5.39 226.9
1.0000 0.3003
0.5238 0.0019

C050-05 2.0867 10.7150 11.2727 0.8149 0.0495 17 183.88 0.32 3.95 13.46 13.79 1333.9
1.0000 0.1231
0.6659 0.0000

C050-07 1.1475 8.0404 8.5479 0.8658 0.0594 8 51.25 0.45 4.59 8.37 8.82 721.9
1.0000 0.2011
0.7308 0.0000

C050-10 0.3750 6.5023 6.7673 0.9446 0.0392 6 14.17 0.62 5.61 7.39 8.01 248.3
1.0000 0.1782


