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A B S T R A C T

This paper addresses challenges in agricultural cooperative autonomous fleet routing through the proposition,
modeling, and resolution of the Dynamic Vehicle Routing Problem with Fair Profits and Time Windows (DVRP-
FPTW). The aim is to dynamically optimize routes for a vehicle fleet serving tasks within assigned time
windows, emphasizing fair and efficient solutions. Our DVRP-FPTW accommodates unforeseen events like task
modifications or vehicle breakdowns, ensuring adherence to task demand, vehicle capacities, and autonomies.
The proposed model incorporates mandatory and optional tasks, including optional ones in operational vehicle
routes if not compromising the vehicles’ profits. Including asynchronous and distributed column generation
heuristics, the proposed Multi-Agent-based architecture DIMASA for the DVRP-FPTW dynamically adapts to
unforeseen events. Systematic Egalitarian social welfare optimization is used to iteratively maximize the profit
of the least profitable vehicle, prioritizing fairness across the fleet in light of unforeseen events. This improves
upon existing dynamic and multi-period VRP models that rely on prior knowledge of demand changes. Our
approach allows vehicle agents to maintain privacy while sharing minimal local data with a fleet coordinator
agent. We propose publicly available benchmark instances for both static and dynamic VRP-FPTW. Simulation
results demonstrate the effectiveness of our DVRP-FPTW model and our multi-agent system solution approach
in coordinating large, dynamically evolving cooperative autonomous fleets fairly and efficiently in close to
real-time.
1. Introduction

In agriculture cooperatives, where individual rationality meets mu-
tual competition among farmers managing fragmented and dispersed
lands with precision farming, an ever-growing need arises for fair
and efficient coordination of shared agriculture vehicles. This demand
becomes pronounced as farmers aim to enhance their competitiveness
across the industry and is particularly evident in sharing expensive
autonomous tractor and agricultural robot (hereafter referred to as
vehicle) fleets.

Agricultural cooperatives, on the other hand, as member-owned
and controlled organizations, pursue common goals for both individual
and mutual economic or social benefits. These organizations operate
on principles that promote democratic control, active member partic-
ipation, and equitable distribution of benefits for all members and,
thus, inherently balance collective efforts and individual profit motives.
In agricultural cooperatives, while the primary goal is collaborative
work, an inherent tension exists between the collective efforts of the
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group and each farmer’s pursuit of maximizing individual profits within
the cooperative’s regulations and value system. This inherent discord
is addressed through the foundational values statement, which en-
capsulates the cooperative’s core principles and code of ethics. Given
the natural conflict between collective objectives and individual profit
motives, farmers, driven by individual rationality, choose to cooperate
within the cooperative framework when the benefits outweigh those
of competition. Furthermore, they are inclined to retain autonomy and
control of their operational and financial decisions rather than handing
over such authority to external entities.

In this context, we study a variant of the capacitated Vehicle Rout-
ing Problem with Profits (VRPP) (Aksen & Aras, 2006; Archetti et al.,
2014), focusing on the deployment of autonomous vehicle fleets for
the efficient execution of geographically dispersed farming operations
or tasks. We explore both heterogeneous vehicle fleets where each
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autonomous vehicle is compatible with specific tasks and homoge-
neous advanced agricultural machinery, including multi-functional au-
tonomous tractors (agrirobots) capable of handling a variety of tasks.
The tasks in this context encompass agricultural activities like plowing,
harvesting, pesticide, and herbicide spraying, among others, with each
task corresponding to a ‘customer’ in traditional VRPP scenarios. No-
tably, each task is linked to revenue collected by the vehicle responsible
for its execution. Vehicle profit is the difference between the revenue
earned from the performed tasks and travel costs. The pivotal question
we address in this paper is how to dynamically optimize a cooperative
fleet’s profits. The challenge lies in balancing efficiency and fairness,
considering both the cooperative’s commitment to equitable distri-
bution and operational efficiency and the occurrence of unexpected
events during fleet operation. Such events (encompassing, e.g., task
alterations, vehicle additions, breakdowns, or in-operation repairs) may
necessitate prompt and flexible route adjustments.

Therefore, building upon López-Sánchez et al. (2023a), the study
at hand proposes, models, and solves the Dynamic Vehicle Routing
Problem with Fair Profits and Time Windows (DVRP-FPTW) in this
complex context, addressing the challenge of dynamically optimizing
fleet profits while accommodating unforeseen events. It enforces ve-
hicle capacity and autonomy constraints, preventing any vehicle from
exceeding the capacity and maximum allowed distance between two
depot visits, while also meeting task demands within specified time
windows.

The proposed DVRP-FPTW model incorporates mandatory and op-
tional tasks. Mandatory tasks are those which, before a disruption
event, were assigned to vehicles that remain operational after the event,
while optional tasks are those left unassigned following the event.
Generally speaking, models in the literature do not oblige to visit each
customer, e.g., (Archetti et al., 2014). As Gendreau et al. (1997), our
proposed model ensures the serving of all mandatory customers (farm-
ing operations or tasks). It incorporates optional tasks into operational
vehicle routes only when their inclusion does not negatively impact the
profit of the vehicles.

The DVRP-FPTW is a computationally complex and intrinsically
distributed problem; thus, we decompose it and apply a column gener-
ation method that initiates with a small set of variables corresponding
to an initial set of routes. It iteratively generates additional vari-
ables (columns) when necessary to enhance the current solution. This
approach is seamlessly integrated into the Distributed Multi-Agent
System (MAS) Architecture proposed in this paper, which we name
DIMASA, comprising a fleet coordinator and vehicle agents, to produce
a scalable and computationally efficient solution suitable for real-world
application. The DIMASA architecture enables flexible and distributed
decision-making in an intrinsically decentralized cooperative fleet en-
vironment. Each vehicle finds its best routes autonomously adapting
to dynamically occurring local events in real time. This adaptation is
driven by the vehicle’s local information and the information received
from the coordinator. Among these routes, the coordinator proposes the
best one for the whole fleet. In fact, the proposed DIMASA architecture
fosters cooperation among different vehicle agents as they collectively
work towards a shared objective. While all vehicles contribute to the
common goal of completing tasks, they may obtain varying profits
depending on their individual routes.

To ensure both fairness and efficiency in dynamic environments, we
propose a systematic egalitarian social welfare optimization approach
that aims to iteratively maximize the profit of vehicles’ routes in a non-
decreasing order of vehicle profitability across the fleet. In addition,
the column generation method maintains the solution quality and
guarantees finding an optimal solution if we integrate it into a Branch
and Price method. The proposed DIMASA architecture allows for a
distributed, parallel, and asynchronous computation, particularly useful
for routing large-scale real-world cooperative vehicle fleets in close-to
real-time, and avoids the need to share private vehicle data. Leveraging
2

distributed computation and real-time information exchange among ve-
hicle agents, the DIMASA architecture mitigates single points of failure,
enhancing fleet robustness against individual vehicle breakdowns and
contingencies.

The paper is structured as follows. In Section 2, we give an overview
of the state of the art. Section 3 presents the DVRP-FPTW problem for-
mulation where we decompose the problem using a column generation
(also called pricing) approach to incorporate it into the proposed DI-
MASA architecture. This new architecture together with our proposed
distributed and scalable solution approach for the DVRP-FPTW problem
is presented in Section 4. In Section 5, we give a use-case example and
assess the performance of our approach on a set of publicly available
benchmark instances that we propose in this paper for the static and
dynamic versions of the VRP-FPTW. Here, we present the setup and
results of simulation experiments with related discussion. We end the
paper in Section 6 with conclusions and future work.

2. Related work

In Lujak et al. (2021), we introduced the Agriculture Fleet Vehicle
Routing Problem (AF-VRP) that, to the best of our knowledge, differs
from any previously studied versions of the Vehicle Routing Problem.
Uniquely characterized by its intrinsic dynamism and decentralization,
and with a specific focus on agriculture cooperatives, our approach ne-
cessitates the consideration of fundamental concepts such as efficiency,
fairness and equity.

2.1. Fair vehicle routing problem

In the domain of collaborative vehicle routing problems, the sole
pursuit of maximum overall benefit for the fleet is complemented by
considerations for service quality, equity, and fairness, e.g., (Gansterer
& Hartl, 2018, 2020; Guajardo & Rönnqvist, 2016).

Soriano et al. (2023) investigate how to solve the Multi-Depot Ve-
hicle Routing Problem (MDVRP) with added profit fairness constraints.
They consider each depot as an independent partner with its fleet and
propose a bi-objective optimization problem that minimizes the total
cost and maximizes the fairness of profit distribution. A multi-objective
optimization approach focusing on max–min fairness was proposed
by Liu and Papageorgiou (2018), aiming to maximize the level of
satisfaction for the least satisfied owner. Furthermore, Lee and Ahn
(2017) introduce a novel vehicle routing problem with vector profits,
where each customer’s revenue is linked to multiple stakeholders, aim-
ing at maximizing the total profit while prioritizing the least satisfied
stakeholder. The authors adopted a column-generation approach to
solve the problem.

Fairness between customers is another important consideration in
addition to the fairness between vehicles. Stavropoulou et al. (2019)
study a Vehicle Routing Problem (VRP) with profits and consistency
constraints considering a mixed set of mandatory and optional cus-
tomers to visit. They determine profitable vehicle routes that maximize
the net profit while satisfying vehicle capacity, route duration, and
consistency constraints. Mancini et al. (2021) and Rodríguez-Martín
et al. (2019) considered the distribution of customers’ requirements
over multiple days with added driver consistency constraints where
customers must be served by the same vehicle over time.

2.2. Dynamic and robust vehicle routing problem

The Dynamic Vehicle Routing Problem (DVRP) is a widely studied
problem which adapts to demand and traffic conditions that vary
over time (Pillac et al., 2013; Psaraftis et al., 2016). The solution
methods to DVRP can be classified into heuristics, exact methods, and
hybrid methods. Most exact methods are based on Mixed Integer Linear
Programming (MILP) models, which find an optimal solution for the
current state. However, they may not remain optimal or even feasible
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as conditions evolve. Therefore, exact methods generally solve small
instances or are used in conjunction with heuristics to obtain good-
quality solutions for more complex problems (Fonseca-Galindo et al.,
2022; Li et al., 2009; Monroy-Licht et al., 2017; Steever et al., 2019;
Ulmer et al., 2019, 2017; Ulmer & Streng, 2019).

Robust Vehicle Routing Problems address uncertainties in customer
demands, travel times, and service times (Bertsimas et al., 2011). Agra
et al. (2013) apply mathematical programming to ensure route feasi-
bility within time windows across all travel times. Duan et al. (2021)
employ robust multi-objective particle swarm optimization to handle
disturbances. The periodic VRP with service time uncertainty is ad-
dressed using a Variable Neighbourhood Search algorithm based on
the worst case (Qi et al., 2018). Guo et al. (2016) propose a two-
phase method including optimal robust routes for all customers in
the first phase and a multi-objective particle swarm optimization for
dynamically appearing customers in the second phase.

The previous approaches do not account for the possibility of ve-
hicle breakdowns, which, in real-world scenarios, can significantly
disrupt the routing plans and result in delays, missed appointments,
and additional costs. Seyyedhasani and Dvorak (2018) propose a re-
optimization algorithm for the DVRP to address unexpected changes
in field conditions or machinery management, transitioning from a
single-depot to a multi-depot VRP to accommodate in-progress vehicle
locations and capabilities. More specifically, they change the initial
VRP with one depot to a Multi-Depot VRP where each new depot
corresponds to the current position of the vehicles when something
goes wrong. A similar idea is used in this article, but with a distributed
approach where the coordinator does not know the exact location of
vehicles. This information is handled only by the vehicles themselves,
and they calculate their routes based on their current characteristics.

2.3. Multiagent approaches to vehicle routing problems

Distributed solution approaches to the DVRP generally utilize multi-
agent systems (MAS) where autonomous agents interact to achieve
a common goal (Alipour et al., 2022; Fonseca-Galindo et al., 2022).
These systems enable decentralized dynamic vehicle routing, where
autonomous agents coordinate decisions in response to the evolving
conditions of the problem. While MAS approaches to the DVRP can
manage large instances and dynamic scenarios, solution quality is
only sometimes guaranteed (Alipour et al., 2022; Bono et al., 2020;
Fonseca-Galindo et al., 2022).

Barbucha (2016, 2019) proposes a multi-agent approach to the
DVRP where agents address continuous customer requests by reallo-
cating vehicles using a Variable Neighborhood Search method. Lujak
et al. (2020) confront dynamic task allocation in large, open, and
collaborative vehicle fleets, using MAS to assign agent-represented
vehicles to dynamically appearing tasks. In addition to these methods,
auction-based methods address larger-scale problems (Los, Schulte,
Gansterer et al., 2022; Los, Schulte, Spaan, & Negenborn, 2022). For
example, customers’ demands can be bundled and auctioned off to
carriers who bid for the right to serve them. While these approaches
do not provide quality of solution guarantees, they are known for their
efficient resource allocation in large-scale scenarios within a limited
computation time.

Contribution of the paper. Led by the open challenges identified in
griculture fleet vehicle routing presented by Lujak et al. (2021), in this
aper, we propose the dynamic VRP-FPTW model, which extends the
tatic model of López-Sánchez et al. (2023a) by incorporating mecha-
isms to adjust predetermined routes in response to unforeseen events.
he proposed problem and related distributed multi-agent-based solu-
ion approach are a continuation of our previous works (López-Sánchez
t al., 2023a, 2022, 2023b), where we proposed deterministic of-
line models for balancing fairness and efficiency of vehicle routes
or the (static) multiple Travelling Salesman Problem and the static
RP-FPTW.
3

3. Dynamic VRP-FPTW

In this Section, we first provide a short description of the static
VRP-FPTW, followed by a description of its dynamic counterpart. The
objective is to develop a decomposed approach for the Dynamic VRP-
FPTW that can be integrated into the DIMASA architecture composed of
a fleet coordinator and vehicle agents, which we propose in this paper.

3.1. Static VRP-FPTW

Consider a complete arc-weighted digraph 𝐺 = (𝑉 ,𝐴), where 𝑉 =
0,… , |𝑉 | − 1} is the vertex set of size |𝑉 |, and 𝐴 is the set of arcs
𝑖, 𝑗) ∈ 𝑉 × 𝑉 with 𝑖 ≠ 𝑗. Vertex 0 ∈ 𝑉 is the depot. The task
farming operation) vertices, included in set 𝑁 = {1,… , |𝑉 |−1}, are the
ertices to be visited (served). The arcs correspond to the shortest paths
etween any two distinct vertices 𝑖 and 𝑗 in a transportation network
mbodied by graph 𝐺. Let 𝑑𝑖𝑗 denote the distance of arc (𝑖, 𝑗) ∈ 𝐴.

Each task 𝑖 ∈ 𝑁 has an associated demand 𝑞𝑖 to be satisfied and a
onnegative revenue 𝑟𝑖. We set the revenue of the depot to zero, 𝑟0 = 0.

Tasks are to be served within a specific time window [𝑙𝑖, 𝑢𝑖], where 𝑙𝑖
and 𝑢𝑖 denote the earliest and latest allowable visit times, respectively.
A fleet 𝐾 consisting of |𝐾| potentially heterogeneous vehicles is initially
stationed at the depot vertex 0 whose time window [𝑙0, 𝑢0] determines
the start and end time of the routes, respectively. Each vehicle 𝑘 ∈
𝐾 has distinct characteristics: travel speed 𝑠𝑝𝑘, autonomy (maximum
travel distance between two depot visits) 𝐷𝑘, carrying capacity 𝑄𝑘, and
travel cost per unit of distance traveled 𝑜𝑘. Time 𝑡𝑖𝑗𝑘 includes traveling
time (𝑑𝑖𝑗∕𝑠𝑝𝑘) from vertex 𝑖 ∈ 𝑉 to vertex 𝑗 ∈ 𝑉 and service time 𝑡𝑗𝑘 for
accomplishing task 𝑗 by vehicle 𝑘 ∈ 𝐾. Therefore, 𝑡𝑖𝑗𝑘 = 𝑑𝑖𝑗∕𝑠𝑝𝑘 + 𝑡𝑗𝑘.
The service time for the depot is 𝑡0𝑘 = 0.

We represent vehicle-task compatibility through the travel cost
value. The travel cost 𝑐𝑖𝑗𝑘 of vehicle 𝑘 ∈ 𝐾 compatible with task 𝑗 ∈ 𝑁
is 𝑐𝑖𝑗𝑘 = 𝑑𝑖𝑗 ⋅ 𝑜𝑘, while this cost is set to a very large value 𝑀 for each
vehicle 𝑘 that is not compatible with task 𝑗 ∈ 𝑁 for all vertex 𝑖 ∈ 𝑉 .

The objective of the (static) VRP-FPTW, as defined by López-
Sánchez et al. (2023a), is to find a set of routes, one for each vehicle,
that maximize the profit of the worst-off vehicle. This profit is calcu-
lated as the difference between the cumulative revenue from the served
tasks and the total cost of the route. The fleet’s mission is to serve each
task within their specified time window exactly once by exactly one
vehicle while fully meeting their demand. The fleet must start from
and return to the depot after completing the service. The constraints
include respecting the autonomy and carrying capacity of the vehicles.
Specifically, the total travel time and resource demands of the tasks to
be served, associated with the length of the route and the load carried,
must not exceed the autonomy and load capacity of any vehicle.

For the self-completeness of this work, in the following, we give
the Static Restricted Master Problem (SRMP) of the Static VRP-FPTW
formulation (11)-(15) in López-Sánchez et al. (2023a) whose aim is to
determine the values of binary decision variables 𝜆𝑝𝑘 equal to 1 if route
𝑝 ∈ 𝛺𝑘 is assigned to vehicle 𝑘, where 𝛺𝑘 is the set of feasible routes
of vehicle 𝑘.

max 𝑦 (1)

𝑠.𝑡.
∑

𝑘∈𝐾

∑

𝑝∈𝛺𝑘

𝑎𝑝𝑗𝑘𝜆
𝑝
𝑘 = 1, ∀𝑗 ∈ 𝑁, (2)

∑

𝑝∈𝛺𝑘

𝑤𝑝
𝑘𝜆

𝑝
𝑘 ≥ 𝑦, ∀𝑘 ∈ 𝐾, (3)

∑

𝑝∈𝛺𝑘

𝜆𝑝𝑘 = 1, ∀𝑘 ∈ 𝐾, (4)

𝑦 ∈ R, 𝜆𝑝𝑘 ∈ {0, 1}, ∀𝑘 ∈ 𝐾,∀𝑝 ∈ 𝛺𝑘. (5)

In this model, parameter 𝑎𝑝𝑗𝑘 = 1 if the task 𝑗 ∈ 𝑁 is served on route 𝑝
by vehicle 𝑘, and 0 otherwise, while parameter 𝑤𝑝

𝑘 is the profit obtained
on route 𝑝 by vehicle 𝑘. Constraints (2) are the one-on-one vehicle-task
assignment constraints. Fairness constraints (3) fix the minimum profit
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for each vehicle to 𝑦. Vehicle constraints (4) guarantee the use of all
vehicles, while constraints (5) define variable domains. The objective
function (1) maximizes profit 𝑦 of the worst-off vehicle. More details
can be found in López-Sánchez et al. (2023a).

The static VRP-FPTW model is designed to accommodate both het-
erogeneous and homogeneous vehicle fleets. It imposes no restrictions
on the structure of the transportation graph, nor on the number of
vehicles or tasks. The model provides a feasible solution under the
assumption that there is a sufficient number of vehicles to serve all
tasks. Thus, there may be instances where no feasible solution exists
due to too restrictive constraints. To address this, we recommend the
implementation of data pre-processing techniques that are essential for
identifying such scenarios where the constraints of vehicle capacity,
task demand, and time windows may lead to infeasibility. The clearly
infeasible cases that we can detect in preprocessing before the first
phase include instances where the total vehicle fleet capacity is in-
sufficient for the overall task demand. Additionally, there are cases
where, for example, the maximum autonomy among the vehicles is
not sufficient for reaching the farthest task and returning to the depot,
or situations where the width of time windows and their sequencing
with respect to vehicle speeds are insufficient to meet the required time
constraints.

3.2. Dynamic VRP-FPTW formulation

The Dynamic VRP-FPTW (DVRP-FPTW) addresses the limitations
of static routing in environments where conditions can change unpre-
dictably. We define a disruptive event 𝑒 as an unforeseen occurrence
or change that impacts the routing solution established beforehand.
The disruptions include fluctuations in task demand, unforeseen vehicle
breakdowns and unexpected delays, rendering visits to tasks within
their designated time windows infeasible as well as new vehicle ad-
ditions to the fleet, among others. Let 𝑧𝑒 ∈ [𝑙0, 𝑢0] be the time of such
an event.

We assume that the time is synchronized throughout the vehicle
fleet. Let 𝐾 ′ represent the set of post-disruption operational vehicles,
including any possible new vehicle(s) and excluding the ones that are
not operational. We define mutually exclusive subsets of tasks 𝑁 at
time 𝑧𝑒: 𝑁1 (already served tasks), 𝑁2 (set of the current tasks of the
operational vehicles at the time instant of disruption), 𝑁3 (mandatory
tasks, i.e., the tasks to be served and previously assigned to set 𝐾 ′ of
operational vehicles after disruption), and 𝑁4 (optional tasks, i.e., both
new tasks and the tasks that had been assigned to the vehicles that
were impacted by a disruptive event and have not been operational
afterward). Considering set 𝑁2, current task 𝑠𝑘 ∈ 𝑁2 refers to the task
that vehicle 𝑘 is performing at the time instant of disruption 𝑧𝑒 or the
next task if the vehicle is already en route. Let us define 𝑧𝑒𝑘 as the instant
of time, immediately after time 𝑧𝑒, when vehicle 𝑘 completes task 𝑠𝑘.
Thus, vehicles can consistently complete their ongoing tasks or the ones
to which they are en route before any potential change of their route
occurs. This approach allows us to make dynamic changes based on
real-time events avoiding too frequent route fluctuations.

Encompassing these changes, the revised routing problem is mod-
eled on a new complete arc-weighted digraph (𝑉 ′, 𝐴′) where 𝑉 ′ =
{0}∪𝑁2 ∪𝑁3 ∪𝑁4 and 𝐴′ is the set of arcs (𝑖, 𝑗) ∈ 𝑉 ′ ×𝑉 ′. The notation
is summarized in Table 1.

3.2.1. Centralized formulation for the DVRP-FPTW
The DVRP-FPTW is formulated as a mixed-integer linear program.

The model includes binary variables 𝑥𝑖𝑗𝑘 indicating whether the route
of vehicle 𝑘 passes through arc (𝑖, 𝑗) ∈ 𝐴′, continuous variables 𝑣𝑖
representing the task completion time of a vehicle at vertex 𝑖 ∈ 𝑉 ′

and a continuous variable 𝑦 associated with the profit of the worst-
off vehicle’s route. In the following, we propose the (centralized)
formulation of the DVRP-FPTW.

max 𝑦 (6)
4

𝑠.𝑡.
∑

𝑘∈𝐾′

∑

𝑖∈𝑉 ′
𝑥𝑖𝑗𝑘 = 1 ∀𝑗 ∈ 𝑁3 (7)

∑

𝑘∈𝐾′

∑

𝑖∈𝑉 ′
𝑥𝑖𝑗𝑘 ≤ 1 ∀𝑗 ∈ 𝑁4 (8)

∑

𝑖∈𝑉 ′
𝑥𝑖𝑗𝑘 −

∑

ℎ∈𝑉 ′
𝑥𝑗ℎ𝑘 = 0 ∀𝑗 ∈ (𝑁3 ∪𝑁4),∀𝑘 ∈ 𝐾 ′ (9)

∑

𝑗∈𝑉 ′
𝑥𝑠𝑗𝑘 = 1 ∀𝑘 ∈ 𝐾 ′, 𝑠 = 𝑠𝑘 (10)

∑

𝑗∈𝑉 ′
𝑥𝑗0𝑘 = 1 ∀𝑘 ∈ 𝐾 ′ (11)

∑

𝑖∈𝑉 ′

∑

𝑗∈𝑉
𝑑𝑖𝑗𝑥𝑖𝑗𝑘 ≤ 𝐷′

𝑘 ∀𝑘 ∈ 𝐾 ′ (12)

∑

𝑖∈𝑉 ′

∑

𝑗∈𝑉 ′
𝑞𝑗𝑥𝑖𝑗𝑘 ≤ 𝑄′

𝑘 ∀𝑘 ∈ 𝐾 ′ (13)

𝑣𝑖 + 𝑡𝑖𝑗𝑘 ≤ 𝑣𝑗 +𝑀(1 − 𝑥𝑖𝑗𝑘) ∀(𝑖, 𝑗) ∈ 𝐴′, 𝑗 ≠ 0,

∀𝑘 ∈ 𝐾 ′ (14)

𝑣𝑠𝑘 = 𝑧𝑒𝑘 ∀𝑘 ∈ 𝐾 ′ (15)

𝑙𝑖 ≤ 𝑣𝑖 ≤ 𝑢𝑖 ∀𝑖 ∈ 𝑉 ′ (16)

𝑦 ≤ 𝑦𝑘 +
∑

𝑖∈𝑉 ′

∑

𝑗∈𝑉 ′
(𝑟𝑖 − 𝑐𝑖𝑗𝑘)𝑥𝑖𝑗𝑘 ∀𝑘 ∈ 𝐾 ′ (17)

𝑦 ∈ R, 𝑥𝑖𝑗𝑘 ∈ {0, 1} ∀(𝑖, 𝑗) ∈ 𝐴′,∀𝑘 ∈ 𝐾 ′. (18)

The proposed DVRP-FPTW model (6)–(18) aims to incorporate set
𝑁4 of optional tasks into the routes of the operational vehicles that must
serve their mandatory tasks in 𝑁3 while striving to maintain or improve
each vehicle’s profit by including into their routes optional tasks.

The objective function (6) maximizes the profit of the worst-off
vehicle. Mandatory task constraints (7) ensure that each mandatory
task in 𝑁3 is served once by exactly one vehicle, while optional task
constraints (8) ensure that every optional task in 𝑁4 is served at most
once. Flow conservation constraints (9) state that if a vehicle serves a
task vertex, it should also leave it. Constraints (10) and (11) ensure
that each vehicle leaves its actual vertex and returns to the depot,
respectively. The adjusted parameters of vehicle 𝑘 are the remaining
autonomy 𝐷′

𝑘, the remaining capacity 𝑄′
𝑘, and the profit 𝑦𝑘 accumu-

lated at the time of the disruptive event. Constraints (12) and (13)
ensure that the total travel time and resource demands of the tasks to
be served by each vehicle 𝑘 ∈ 𝐾 ′ do not exceed its remaining autonomy
𝐷′

𝑘 nor capacity 𝑄′
𝑘, respectively. Constraints (14) set the arrival time

at each vertex and eliminate subtours. The starting time from each
vehicle is determined by constraints (15), each vehicle 𝑘 ∈ 𝐾 ′ begins its
updated route after completing the task 𝑠𝑘 at the vertex it is currently
located at or en route to. Parameter 𝑧𝑒𝑘 represents the completion time
of task 𝑠𝑘. Constraints (16) ensure that task time windows are satisfied.
We take in consideration the vehicle profits accumulated before the
disruptive event and do not reassign already served tasks in set 𝑁1.
Fairness constraints (17) keep track of the worst-off vehicle profit 𝑦.
Each vehicle 𝑘’s profit 𝑦𝑘 accumulated from the tasks served before the
disruptive event is added to the profit of its tasks to be served in the
newly found route. In this way, we balance the efficiency and fairness
of the routes considering the overall profit received by each vehicle in
the time horizon [𝑙0, 𝑢0].

3.2.2. Decomposed formulation for DVRP-FPTW
Next, we present a decomposed mathematical program designed for

a multi-agent system, consisting of a coordinator agent and a fleet of
vehicles with computation and communication capabilities.

Applying Dantzig–Wolfe decomposition (Lübbecke & Desrosiers,
2005; Pinto et al., 2015), the dynamic centralized model (6)–(18)
is reformulated into a Dynamic Restricted Master Problem (DRMP)
formulation of the DVRP-FPTW. Each vehicle 𝑘 ∈ 𝐾 ′ is considered
with a set of feasible routes 𝛩𝑘, starting at the current location 𝑠𝑘 and

finishing in the depot 0.
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Table 1
Parameters and decision variables of the DVRP-FPTW.
Parameters Symbol Description

Shared fleet information 

Vertices 𝑉 ′ Set of vertices, 𝑉 ′ = {0} ∪𝑁2 ∪𝑁3 ∪𝑁4.
Arcs 𝐴′ Set of arcs (𝑖, 𝑗) ∈ 𝑉 ′ × 𝑉 ′.
Depot 0 Depot vertex, 0 ∈ 𝑉 ′.
Serviced tasks 𝑁1 Set of served tasks.
Current tasks 𝑁2 Set of current tasks of the operational

vehicles at the time instant of disruption.
Mandatory tasks 𝑁3 Set of pending mandatory tasks’

vertices.
Optional tasks 𝑁4 Set of pending optional tasks’ vertices.
Distances 𝑑𝑖𝑗 Travel distance of arc (𝑖, 𝑗) ∈ 𝐴′.
Task revenue 𝑟𝑖 Nonnegative revenue obtained by serving

task 𝑖 ∈ 𝑁3 ∪𝑁4.
Task demand 𝑞𝑖 Nonnegative demand associated with

each task 𝑖 ∈ 𝑁3 ∪𝑁4.
Task time window [𝑙𝑖 , 𝑢𝑖] Time window for serving task

𝑖 ∈ 𝑁3 ∪𝑁4.
Vehicles 𝐾 ′ Updated set of operational vehicles 𝑘 ∈ 𝐾 ′.
Disruption event time 𝑧𝑒 Disruption time of event 𝑒.

Private information 𝑘 for each vehicle 𝑘 ∈ 𝐾 ′

Travel cost 𝑜𝑘 Travel cost of vehicle 𝑘 per unit of distance
traveled.

Service time 𝑡𝑗𝑘 Service time of vehicle 𝑘 required for
completing task 𝑗.

Travel time 𝑡𝑖𝑗𝑘 Travel time of vehicle 𝑘 on arc (𝑖, 𝑗) ∈ 𝐴′

including service time 𝑡𝑗𝑘.
Vehicle autonomy 𝐷′

𝑘 Remaining autonomy of vehicle 𝑘 in terms
of maximum traveling distance.

Vehicle capacity 𝑄′
𝑘 Remaining capacity of vehicle 𝑘.

Vehicle post-disruption location 𝑠𝑘 Post-disruption vertex location of vehicle 𝑘.
Post-disruption start time 𝑧𝑒𝑘 Post-disruption start time of vehicle 𝑘.
Vehicle profit 𝑦𝑘 Accumulated profit of vehicle 𝑘.

Decision variables

Route-arc assignment 𝑥𝑖𝑗𝑘 𝑥𝑖𝑗𝑘 = 1 if vehicle 𝑘 ∈ 𝐾 travels arc
(𝑖, 𝑗) ∈ 𝐴′ and 0 otherwise.

Task completion time 𝑣𝑖 Time instant of the completion of task 𝑖.
Worst-off profit 𝑦 Profit of the worst-off vehicle
𝜋
We let 𝑎𝑝𝑗𝑘 be a binary parameter equal to 1 if route 𝑝 ∈ 𝛩𝑘 of vehicle
serves task vertex 𝑗, and let 𝑤𝑝

𝑘 be the profit obtained in route 𝑝 ∈ 𝛩𝑘
y vehicle 𝑘 ∈ 𝐾 ′. Moreover, we let 𝛿𝑝𝑘 be the decision variable that

equals 1 if route 𝑝 ∈ 𝛩𝑘 is selected for vehicle 𝑘. The dynamic restricted
master problem (DRMP) of the DVRP-FPTW is then:

max 𝑦 (19)

𝑠.𝑡.
∑

𝑘∈𝐾′

∑

𝑝∈𝛩𝑘

𝑎𝑝𝑗𝑘𝛿
𝑝
𝑘 = 1, ∀𝑗 ∈ 𝑁3, (20)

∑

𝑘∈𝐾′

∑

𝑝∈𝛩𝑘

𝑎𝑝𝑗𝑘𝛿
𝑝
𝑘 ≤ 1, ∀𝑗 ∈ 𝑁4, (21)

∑

𝑝∈𝛩𝑘

𝑤𝑝
𝑘𝛿

𝑝
𝑘 + 𝑦𝑘 ≥ 𝑦, ∀𝑘 ∈ 𝐾 ′, (22)

∑

𝑝∈𝛩𝑘

𝛿𝑝𝑘 = 1, ∀𝑘 ∈ 𝐾 ′, (23)

𝑦 ∈ R, 𝛿𝑝𝑘 ∈ {0, 1}, ∀𝑘 ∈ 𝐾 ′,∀𝑝 ∈ 𝛩𝑘, (24)

he objective function (19) maximizes the profit 𝑦 of the worst-off
ehicle. Constraints (20) assure serving each mandatory task 𝑗 ∈ 𝑁3.
onstraints (21) assure that all optional tasks 𝑗 ∈ 𝑁4 are served at
ost once. Fairness constraints (22) keep track of the minimum profit

f the entire fleet 𝐾 ′ after disruption. Constraints (23) guarantee that
ll post-disruption operational vehicles (𝐾 ′) are assigned a route.

The mathematical model (19)–(24) is used by the coordinator agent
or the dynamic vehicle-route assignment and the computation of
hadow prices (dual variables). The shadow prices are obtained by
olving the linear relaxation of the DRMP. They may be interpreted in
conomic terms as the opportunity cost of resources and can be positive
5

r negative. Specifically, assignment constraints (20) and (21) generate
𝑗 ∈ R for 𝑗 ∈ 𝑁3 and 𝜋𝑗 ≥ 0 for 𝑗 ∈ 𝑁4, indicating the marginal
cost of including task 𝑗 in a route. Likewise, fairness constraints (22)
and fleet utilization constraints (23) produce shadow prices 𝜇𝑘 ≤ 0 and
𝛼𝑘 ∈ R, respectively, for each vehicle 𝑘 ∈ 𝐾 ′, representing the marginal
cost associated with each vehicle. The column generation subproblem
associated with the DRMP is an Elementary Shortest Path Problem with
Resource Constraints (ESPPRC) (Dror, 1994).

4. DIMASA: Distributed multi-agent system architecture for the
DVRP-FPTW

We propose next a new decision-making architecture for the DVRP-
FPTW, leveraging a distributed MAS that we name DIMASA. Illustrated
in Fig. 1, this architecture includes a Coordinator Agent and multiple
Vehicle Agents that mutually collaborate to find the best vehicle routes.
The optimization process involves solving both the restricted master
problem and dedicated column generation subproblems (pricing prob-
lems) through a distributed and asynchronous implementation of the
column generation approach, aligning with methodologies in Basso and
Ceselli (2017, 2022).

4.1. Coordinator agent

The coordinator agent ensures an equitable distribution of profit and
efficiency across the fleet through systematic optimization of egalitarian
social welfare for VRP-FPTW that we propose in this paper and that ex-
tends the model for the multiple Travelling Salesman Problem (mTSP)
from López-Sánchez et al. (2022, 2023b). This approach prioritizes
vehicle performance optimization in non-decreasing order of vehicle
routes’ profits.
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Fig. 1. DIMASA architecture for the Static/Dynamic VRP-FPTW.
The coordinator’s decision-making process involves two iterative
phases, Fig. 1: before the start of the fleet’s operation, routes for the
fleet’s vehicles that serve pending tasks are found (phase 1); these
routes are adapted in response to unexpected events occurring during
operation (phase 2). Phase 1 assigns a set of tasks 𝑁 to the fleet
set 𝐾 based on the static VRP-FPTW model (1)–(5) following the
Systematic Coordinator Agent Algorithm – SYSCA (Algorithm 1), while
phase 2 considers sets of tasks in 𝑁3 and 𝑁4 for the assignment
among available vehicles in set 𝐾 ′ by solving the DRMP model (19)–
(24), following the Dynamic Systematic Coordinator Agent Algorithm
– DSYSCA (Algorithm 3).

DIMASA architecture supports seven types of messages between
the coordinator and vehicle agents to manage information exchange:
‘GraphInfo’, ‘VehicleEvent’, ‘AssignedRoute’, ‘ShadowPrices’, ‘RoutePropos-
als’, ‘Acknowledged(k, msg)’, and ‘StopRouteFinding’. Updated shared
fleet information from Table 1 is found inside the ‘GraphInfo’ messages,
required by the vehicles to update their graph information. The ‘Vehi-
cleEvent’ message informs of a breakdown or addition of a vehicle into
the fleet. An ‘AssignedRoute’ message sent by the coordinator indicates
the route that a vehicle should follow. Also, private shadow prices 𝜇𝑘
and 𝛼𝑘 are sent by the coordinator only to the corresponding vehicle
𝑘 ∈ 𝐾 together with (shared) marginal costs 𝜋𝑗 for each task 𝑗 ∈ 𝑁3∪𝑁4
in a ‘ShadowPrices’ message. The ‘RouteProposals’ message sent from a
vehicle agent to the coordinator agent contains a set of pairs {(𝑘, 𝑝,𝑤𝑝

𝑘)}
with feasible routes with negative reduced costs 𝑝 and their related
profit 𝑤𝑝

𝑘, if any. Ultimately, while the asynchronous nature character-
izes the proposed column generation approach, it is essential to note
the presence of a synchronization point within the devised solution
strategy. This point of convergence is strategically facilitated through
the utilization of a specific message, namely, ‘StopRouteFinding’.
6

Algorithm 1: SYSCA Algorithm
Input: 𝑁 - Set of tasks, 𝐾 - Set of vehicles.
Output: For all vehicles 𝑘 ∈ 𝐾: Send routes 𝑝, where (𝑘, 𝑝) ∈ 𝑆.

1 𝐾 ′′ = 𝐾 ;
2 𝑁 ′′ = 𝑁 ;
3 𝑆 = ∅ ;
4 while 𝐾 ′′ ≠ ∅ do
5 𝑃 = 𝑉 𝑅𝑃 − 𝐹𝑇𝑃𝑊 (𝑁 ′′, 𝐾 ′′); // (Algorithm 2)
6 (𝑘𝑚𝑖𝑛, 𝑝𝑚𝑖𝑛) = 𝑎𝑟𝑔min𝑘∈𝐾′′ ,𝑝∈𝑃 {𝑤

𝑝
𝑘} ;

7 Send 𝐴𝑠𝑠𝑖𝑔𝑛𝑒𝑑𝑅𝑜𝑢𝑡𝑒(𝑘𝑚𝑖𝑛, 𝑝𝑚𝑖𝑛) to vehicle 𝑘𝑚𝑖𝑛 ;
8 𝐾 ′′ = 𝐾 ′′ ⧵ {𝑘𝑚𝑖𝑛} ;
9 𝑁 ′′ = 𝑁 ′′ ⧵ 𝑇 𝑎𝑠𝑘𝑠(𝑝𝑚𝑖𝑛) ;
10 𝑆 = 𝑆 ∪ {(𝑘𝑚𝑖𝑛, 𝑝𝑚𝑖𝑛)} ;
11 end

4.1.1. Phase 1
In Phase 1, the coordinator agent uses the SYStematic Coordinator

Agent (SYSCA) Algorithm (Algorithm 1) to iteratively assign a route to
each vehicle in the fleet prioritizing the vehicles with the least profit.

SYSCA Algorithm (Algorithm 1). Initially, the coordinator agent receives
the information about the set of tasks 𝑁 and vehicles 𝐾 (Input). SYSCA
runs over |𝐾| optimization iterations where the auxiliary sets 𝑁 ′′

and 𝐾 ′′ represent the pending unassigned tasks and vehicles at each
iteration, respectively.

At each iteration, the coordinator agent solves the static VRP-FPTW
model by employing Algorithm 2 (CA Algorithm from López-Sánchez
et al. (2023a)). This is done in collaboration with operational vehicle
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Algorithm 2: VRP-FPTW Algorithm
Input: 𝑁 - set of tasks, 𝐾 - set of vehicles
Output: 𝑃 = {(𝑘, 𝑝,𝑤𝑝

𝑘),∀𝑘 ∈ 𝐾} - set of assigned routes
1 Send 𝐺𝑟𝑎𝑝ℎ𝐼𝑛𝑓𝑜() to all vehicles 𝑘 ∈ 𝐾;
2 Initialize routes;
3 Calculate shadow prices (∀𝑗 ∈ 𝑁 ∶ 𝜋𝑗 , ∀𝑘 ∈ 𝐾 ∶ 𝜇𝑘 and 𝛼𝑘) in

SRMP;
4 Send 𝑆ℎ𝑎𝑑𝑜𝑤𝑃𝑟𝑖𝑐𝑒𝑠(𝜋𝑗 ,∀𝑗 ∈ 𝑁 ;𝜇𝑘, 𝛼𝑘) to all vehicles 𝑘 ∈ 𝐾;
5 repeat
6 if new ‘RouteProposals’({(𝑘, 𝑝,𝑤𝑝

𝑘)}) received from any 𝑘 ∈ 𝐾
then

7 𝛺𝑘 = 𝛺𝑘 ∪ {(𝑘, 𝑝,𝑤𝑝
𝑘)};

8 Calculate shadow prices (∀𝑗 ∈ 𝑁 ∶ 𝜋𝑗 , ∀𝑘 ∈ 𝐾 ∶ 𝜇𝑘 and
𝛼𝑘) in SRMP;

9 Send 𝑆ℎ𝑎𝑑𝑜𝑤𝑃𝑟𝑖𝑐𝑒𝑠(𝜋𝑗 ,∀𝑗 ∈ 𝑁 ;𝜇𝑘, 𝛼𝑘) to all vehicles
𝑘 ∈ 𝐾;

10 end
11 until Termination criteria;
12 Send 𝑆𝑡𝑜𝑝𝑅𝑜𝑢𝑡𝑒𝐹 𝑖𝑛𝑑𝑖𝑛𝑔() to each vehicle 𝑘 ∈ 𝐾 ;
13 {(𝑘, 𝑝),∀𝑘 ∈ 𝐾}= SRMP({𝛺𝑘,∀𝑘 ∈ 𝐾}, 𝑁);
14 𝑃 = {(𝑘, 𝑝,𝑤𝑝

𝑘),∀𝑘 ∈ 𝐾};
15 Return 𝑃

agents in 𝐾, where each one runs in parallel its own copy of the DRGV
Algorithm (Algorithm 5)).

Based on the promising routes received from the vehicle agents, the
coordinator agent selects a route for each one of the vehicles aiming at
the maximization of the profit of the worst-off vehicle. Then, vehicle
𝑘𝑚𝑖𝑛 with the minimum profit of its route 𝑝𝑚𝑖𝑛 is selected and the
oordinator sends an 𝐴𝑠𝑠𝑖𝑔𝑛𝑒𝑑𝑅𝑜𝑢𝑡𝑒(𝑘𝑚𝑖𝑛, 𝑝𝑚𝑖𝑛) message to that vehicle

indicating its assigned route. Vehicle 𝑘𝑚𝑖𝑛 and tasks (𝑇 𝑎𝑠𝑘𝑠(𝑝𝑚𝑖𝑛)) that
are part of its route 𝑝𝑚𝑖𝑛, are removed from sets 𝐾 ′′ and 𝑁 ′′, respec-
tively. This process is repeated in subsequent iterations, to select the
routes for the next worst-off vehicle (one by one) until all |𝐾| vehicles
in the fleet are assigned a route.

VRP-FPTW Algorithm (Algorithm 2). For self-sufficiency of this work, we
xplain the VRP-FPTW solution approach – Algorithm 2 (CA Algorithm
rom López-Sánchez et al. (2023a)). This algorithm finds a route for
ach vehicle 𝑘 ∈ 𝐾 by only focusing on the maximization of the profit
f the worst-off vehicle.

The input to the algorithm is composed of a set of tasks 𝑁 and a set
of vehicles 𝐾 while the output is a set of vehicle routes 𝑃 = {(𝑘, 𝑝,𝑤𝑝

𝑘) ∣
𝑘 ∈ 𝐾} where the profit of the worst-off vehicle is maximized.

First, the coordinator sends a 𝐺𝑟𝑎𝑝ℎ𝐼𝑛𝑓𝑜() message containing tasks
in 𝑁 to all vehicles 𝑘 ∈ 𝐾 (line 1). The routes are initialized on line 2
by creating an artificial solution for the SRMP model (1)–(5), where a
single artificial vehicle serves all the tasks obtaining a large (infinitely)
negative profit. Thanks to this artificial solution, the linear relaxation of
the model can be carried out. Next, the coordinator calculates shadow
prices by solving the linear relaxation of the SRMP (line 3), and sends a
‘ShadowPrices’ message to each vehicle agent with its dedicated private
information, thus maintaining privacy in the system (line 4).

Whenever the coordinator receives any vehicle’s new routes with
negative reduced costs, it adds them into the set 𝛺 = {𝛺𝑘,∀𝑘 ∈ 𝐾} of
columns for the SRMP (line 7) and updates and sends shadow prices
to all vehicles 𝑘 ∈ 𝐾 (lines 8 and 9). This asynchronous and iterative
process is repeated until the Termination criteria are met (line 11).

Choosing appropriate termination criteria is a crucial algorithmic
decision in column generation, as there is no formula that works
well for all instances (Basso & Ceselli, 2022; Bennett et al., 2000).
Termination criteria based on the number of iterations are not reliable
7

in this context. Since the messages exchanged among the vehicles and
the coordinator agent are asynchronous, they can arrive at different
iterations, so termination criteria based on the computation time or the
number of columns are more suitable. The criteria we implement in our
solution approach include the receipt of an empty route proposal by all
vehicles 𝑘 ∈ 𝐾 (implying that vehicles cannot find any new routes with
negative reduced costs), or when a given time limit is reached.

Based on the features and the analysis of our problem (López-
Sánchez et al., 2023a), we have fixed the time limit for the coordinator
agent to 10 min for the static case and 1 min for the dynamic case,
and for the vehicle agent in 1 min and 10 s, respectively. However, in
all the experiments performed, our algorithm finished before the time
limit was reached, which shows its effectiveness.

There may exist vehicles that have not finished the computation
process for finding their routes with negative reduced cost within
this time limit. Thus, the coordinator agent sends to all vehicles a
‘StopRouteFinding’ message (line 12) to ensure that they are informed
of the termination of Algorithm 2. Finally, the coordinator agent solves
the SRMP (line 13), and the algorithm returns a set of routes 𝑃 =
{(𝑘, 𝑝,𝑤𝑝

𝑘)} (line 15). At termination, every vehicle 𝑘 ∈ 𝐾 is assigned
route 𝑝. However, if the original artificial solution with the negative
profit is found in the final assignment, the algorithm has not found a
solution.

Thanks to the systematic optimization of egalitarian social welfare,
the values of the worst-off profit 𝑦 in one iteration may surpass the
profit from the previous iteration(s). By adopting this iterative method,
we ensure both equity and efficiency for all vehicles. The advantage of
computing the systematic egalitarian social welfare in this way is that
the solution of the SRMP takes advantage of the previously computed
routes to produce new shadow prices and reiterate the process.

4.1.2. Phase 2
In phase 2, the coordinator agent assumes an idle state awaiting a

disruptive event denoted as 𝑒 within the operational timeframe 𝑧𝑒 ∈
[𝑙0, 𝑢0].

Upon a disruptive event, the coordinator triggers the Dynamic
Systematic Coordinator Agent Algorithm (DSYSCA) as delineated in
Algorithm 3.

DSYSCA Algorithm (Algorithm 3). After classifying event 𝑒, Dynamic
SYStematic Coordinator Agent (DSYSCA) Algorithm updates the set of
available vehicles 𝐾 ′, mandatory tasks 𝑁3, and optional tasks 𝑁4 as
follows: a new task 𝑛 and a new vehicle 𝑘 are added to subset 𝑁3 and
𝐾 ′, respectively (lines 2 and 4); a broken down vehicle 𝑘 is removed
from the fleet 𝐾 ′ (line 8) and set 𝑁𝑘 ⊂ 𝑝𝑘 of its not yet served tasks
are added to optional tasks in 𝑁4 (line 9).

Next, similar to the SYSCA algorithm (Algorithm 1), the coordinator
agent instantiates auxiliary sets 𝑁 ′

3, 𝑁
′
4, 𝑆

′, and 𝐾 ′′ representing the
pending mandatory and optional unassigned tasks, the solution set,
and operational vehicles in each iteration, respectively (lines 11–13).
The algorithm finds the routes for the vehicles following the systematic
egalitarian social welfare optimization (lines 14–22). It performs |𝐾 ′

|

iterations where in each one, a route maximizing the profit of the worst-
off vehicle 𝑘𝑚𝑖𝑛 is found considering tasks from 𝑁3 and 𝑁4. In each
iteration, the coordinator solves the DVRP-FPTW (Algorithm 4), line
15.

DVRP-FPTW Algorithm (Algorithm 4).

This algorithm follows the idea of the VRP-FPTW Algorithm (Al-
gorithm 2) but solves the dynamic restricted master problem (DRMP)
(19)–(24) to find shadow prices (lines 3 and 8). The coordinator initial-
izes an empty set, denoted as 𝛩, to store feasible routes with negative
reduced costs received from each operational vehicle post-disruption.

Whenever the coordinator receives any new routes with negative
reduced costs, it adds them to the set 𝛩 = {𝛩𝑘,∀𝑘 ∈ 𝐾 ′} of columns

for the DRMP (line 7) and calculates and sends shadow prices to all
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Algorithm 3: DSYSCA Algorithm
Input: 𝐾 ′ - set of vehicles, 𝑁3 - set of pending mandatory tasks,

𝑁4 - set of pending optional tasks, 𝑒 - disruptive event
Output: For all vehicles 𝑘 ∈ 𝐾 ′: Send new routes 𝑝,

where(𝑘, 𝑝) ∈ 𝑆′.
1 if 𝑒: New_task {n} then
2 𝑁3 ← 𝑁3 ∪ {𝑛} ;
3 end
4 if 𝑒: New_vehicle {k} then
5 𝐾 ′ ← 𝐾 ′ ∪ {𝑘} ;
6 end
7 if 𝑒: Vehicle_breakdown {k} then
8 𝐾 ′ ← 𝐾 ′ ⧵ {𝑘} ;
9 𝑁4 ← 𝑁4 ∪𝑁𝑘 ;
10 end
11 𝑁 ′

3 = 𝑁3, 𝑁 ′
4 = 𝑁4 ;

12 𝑆′ = ∅ ;
13 𝐾 ′′ = 𝐾 ′ ;
14 while 𝐾 ′′ ≠ ∅ do
15 𝑃 ′ = 𝐷𝑉 𝑅𝑃 − 𝐹𝑃𝑇𝑊 (𝑁 ′

3, 𝑁
′
4, 𝐾

′′) ; // (Algorithm 4)
16 (𝑘𝑚𝑖𝑛, 𝑝𝑚𝑖𝑛) = argmin𝑘∈𝐾′′ ,𝑝∈𝑃 ′{𝑤𝑝

𝑘} ;
17 Send 𝐴𝑠𝑠𝑖𝑔𝑛𝑒𝑑𝑅𝑜𝑢𝑡𝑒(𝑘𝑚𝑖𝑛, 𝑝𝑚𝑖𝑛) to vehicle 𝑘𝑚𝑖𝑛 ;
18 𝐾 ′′ = 𝐾 ′′ ⧵ {𝑘𝑚𝑖𝑛} ;
19 𝑁 ′

3 = 𝑁 ′
3 ⧵ 𝑇 𝑎𝑠𝑘𝑠(𝑝𝑚𝑖𝑛) ;

20 𝑁 ′
4 = 𝑁 ′

4 ⧵ 𝑇 𝑎𝑠𝑘𝑠(𝑝𝑚𝑖𝑛) ;
21 𝑆′ = 𝑆′ ∪ {(𝑘𝑚𝑖𝑛, 𝑝𝑚𝑖𝑛)}
22 end

Algorithm 4: DVRP-FPTW Algorithm
Input: 𝑁 ′

3 - Set of mandatory tasks, 𝑁 ′
4 - Set of optional tasks,

𝐾 ′ - Set of operational vehicles
Output: 𝑃 ′ = {(𝑘, 𝑝,𝑤𝑝

𝑘),∀𝑘 ∈ 𝐾} - set of assigned routes
1 Send 𝐺𝑟𝑎𝑝ℎ𝐼𝑛𝑓𝑜(𝑁 ′

3, 𝑁
′
4) to all vehicles 𝑘 ∈ 𝐾 ′ ;

2 𝛩 = ∅ ;
3 Calculate shadow prices (∀𝑗 ∈ 𝑁 ′

3 ∪𝑁 ′
4 ∶ 𝜋𝑗 ; ∀𝑘 ∈ 𝐾 ′ ∶ 𝜇𝑘 and

𝛼𝑘) ;
4 Send 𝑆ℎ𝑎𝑑𝑜𝑤𝑃𝑟𝑖𝑐𝑒𝑠(𝜋𝑗 , 𝜇𝑘, 𝛼𝑘) to all vehicles 𝑘 ∈ 𝐾 ′);
5 repeat
6 if new ‘RouteProposals’({(𝑘, 𝑝,𝑤𝑝

𝑘)}) received from any 𝑘 ∈ 𝐾 ′

then
7 𝛩𝑘 = 𝛩𝑘 ∪ {(𝑘, 𝑝,𝑤𝑝

𝑘)};
8 Calculate shadow prices (∀𝑗 ∈ 𝑁 ′

3 ∪𝑁 ′
4 ∶ 𝜋𝑗 ;

∀𝑘 ∈ 𝐾 ′ ∶ 𝜇𝑘, 𝛼𝑘) ;
9 Send 𝑆ℎ𝑎𝑑𝑜𝑤𝑃𝑟𝑖𝑐𝑒𝑠(𝜋𝑗 ,∀𝑗 ∈ 𝑁 ′

3 ∪𝑁 ′
4;𝜇𝑘, 𝛼𝑘) to all

vehicles 𝑘 ∈ 𝐾 ′) ;
10 end
11 until Termination criteria;
12 Send 𝑆𝑡𝑜𝑝𝑅𝑜𝑢𝑡𝑒𝐹 𝑖𝑛𝑑𝑖𝑛𝑔() to each vehicle 𝑘 ∈ 𝐾 ′ ;
13 {(𝑘, 𝑝),∀𝑘 ∈ 𝐾 ′}= DRMP({𝛩𝑘,∀𝑘 ∈ 𝐾 ′}, 𝑁);
14 𝑃 ′ = {(𝑘, 𝑝,𝑤𝑝

𝑘),∀𝑘 ∈ 𝐾 ′};
15 return 𝑃 ′

vehicles 𝑘 ∈ 𝐾 ′ (lines 8 and 9). This asynchronous and iterative process
s repeated until the Termination criteria are met (line 11).

The ‘StopRouteFinding’ message (line 12) is sent to all vehicles 𝑘 ∈
𝐾 ′ to inform them of the termination of the algorithm.

Solution 𝑃 ′ = {(𝑘, 𝑝,𝑤𝑝
𝑘),∀𝑘 ∈ 𝐾} found by solving the DRMP

contains an assigned route 𝑝 for each vehicle 𝑘 ∈ 𝐾 ′ and its associated
profit 𝑤𝑝 .
8

𝑘

Algorithm 5: DRGV Algorithm followed by each vehicle 𝑘 ∈ 𝐾 ′

Input:  - shared fleet information, 𝑘 - private vehicle
information

Output: 𝑅𝑜𝑢𝑡𝑒𝑃 𝑟𝑜𝑝𝑜𝑠𝑎𝑙𝑠({(𝑘, 𝑝,𝑤𝑝
𝑘)}) sent to coordinator agent

1 𝐼𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑒𝐸𝑆𝑃𝑅𝐶(,𝑘);
2 𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑡𝑒 ← False ;
3 while !𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑡𝑒 do
4 𝑚𝑠𝑔 ← 𝑊 𝑎𝑖𝑡𝑀𝑒𝑠𝑠𝑎𝑔𝑒();
5 Send 𝐴𝑐𝑘𝑛𝑜𝑤𝑙𝑒𝑑𝑔𝑒𝑑(𝑘, 𝑚𝑠𝑔);
6 if msg == GraphInfo() then
7 𝑈𝑝𝑑𝑎𝑡𝑒𝐺𝑟𝑎𝑝ℎ𝐼𝑛𝑓𝑜();
8 if msg == StopRouteFinding() then
9 𝑆𝑡𝑜𝑝𝐸𝑆𝑃𝑃𝑅𝐶();
10 if msg == AssignedRoute(k,p) then
11 do in parallel
12 𝑅𝑢𝑛𝑅𝑜𝑢𝑡𝑒(𝑝)
13 if RouteFinished(p) then
14 Send 𝑅𝑜𝑢𝑡𝑒𝐹 𝑖𝑛𝑖𝑠ℎ𝑒𝑑(𝑘, 𝑝) to coordinator agent
15 𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑡𝑒 ← True
16 goto line 4

17 if msg==ShadowPrices(𝜋𝑗 ,∀𝑗 ∈ 𝑁 ;𝜇𝑘, 𝛼𝑘) then
18 𝐶𝐺 ← 𝑈𝑝𝑑𝑎𝑡𝑒𝑅𝑒𝑑𝑢𝑐𝑒𝑑𝐶𝑜𝑠𝑡𝑠(𝜋𝑗 ,∀𝑗 ∈ 𝑁 ;𝜇𝑘, 𝛼𝑘);
19 {𝑝} ← 𝑆𝑜𝑙𝑣𝑒𝐸𝑆𝑃𝑃𝑅𝐶(,𝑘, 𝐶𝐺);
20 Send 𝑅𝑜𝑢𝑡𝑒𝑃 𝑟𝑜𝑝𝑜𝑠𝑎𝑙𝑠({(𝑘, 𝑝,𝑤𝑝

𝑘)});

After an event is processed and new routes are obtained, the co-
ordinator returns to the idle state awaiting new events. Once all the
pending tasks have been served, the condition Operation finished? in
Fig. 1 returns ‘‘Yes’’ to indicate that the operation is over.

4.2. Vehicle agent

To generate new feasible routes with negative reduced cost (new
columns in the SRMP in phase 1 and the DRMP in phase 2) in response
to updated shadow prices received from the coordinator, each vehicle
agent 𝑘 ∈ 𝐾 maintains a message pool with the coordinator, wherein
messages are retained until the vehicle agent reads and responds to
them. The decision making of each vehicle is determined by the Dis-
tributed Route Generation by Vehicle (DRGV) Algorithm (Algorithm 5)
that sends messages to the coordinator.

DRGV Algorithm (Algorithm 5). The algorithm initializes by receiving
from the coordinator agent the shared fleet information  (Table 1).
ach vehicle 𝑘 keeps its own private information 𝑘 in memory.

The algorithm is iterative. At each iteration, a vehicle reads and
processes the messages from the coordinator (lines 4-20). If it is the
‘GraphInfo’ message, it updates its own graph (line 7). If it receives
a ‘StopRouteFinding()’ message (line 8), it signals the termination of
the ESPPRC algorithm by 𝑆𝑡𝑜𝑝𝐸𝑆𝑃𝑃𝑅𝐶(). Upon receipt of the ‘As-
ignedRoute(k,p)’ message (line 10), by 𝑅𝑢𝑛𝑅𝑜𝑢𝑡𝑒(𝑝), the vehicle starts
erving the tasks in its route and, in parallel, awaits messages for
ny route changes (line 17); if no messages are received before the
oute is finished, the vehicle sends 𝑅𝑜𝑢𝑡𝑒𝐹 𝑖𝑛𝑖𝑠ℎ𝑒𝑑(𝑘, 𝑝) message to the
oordinator (line 13) and the algorithm terminates.

Each time a vehicle receives a ‘ShadowPrices’ message with updated
alues 𝜇𝑘, 𝛼𝑘, 𝜋𝑖 for all 𝑖 ∈ 𝑁 (line 17), it updates its reduced costs in
𝐺 = {𝑐𝑖𝑗𝑘 ∣ (𝑖, 𝑗) ∈ 𝐴} (line 18). These updates are made as follows:

• 𝑐𝑖𝑗𝑘 = (𝜋𝑗+(𝑟𝑖−𝑐𝑖𝑗𝑘)⋅𝜇𝑘), for all arcs (𝑖, 𝑗) ∈ 𝑉 ×𝑁 , representing the
revised reduced cost for arcs (𝑖, 𝑗) ∈ 𝑉 ×𝑁 considering revenue 𝑟𝑖
and cost 𝑐𝑖𝑗𝑘 for vehicle 𝑘.

• 𝑐𝑖0𝑘 = (𝑟𝑖 − 𝑐𝑖0𝑘) ⋅ 𝜇𝑘 + 𝛼𝑘, indicating the new reduced cost for all
arcs (𝑖, 0), where 𝑖 ∈ 𝑉 returning to depot 0.
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In the 𝑆𝑜𝑙𝑣𝑒𝐸𝑆𝑃𝑃𝑅𝐶(,𝑘, 𝐶𝐺) function (line 19), each vehicle agent
resolves its own column generation subproblem, the Elementary Short-
est Path Problem with Resource Constraints (ESPPRC), which is an
NP-Hard problem (Dror, 1994).

The ESPPRC seeks the best route with negative reduced cost and
without violating any constraints for each vehicle 𝑘 ∈ 𝐾 ′. The route
starts from current task 𝑠𝑘 to depot 0. Because the ESPPRC is computa-
tionally expensive, we use two different algorithms to find good routes
with negative reduced costs: 1) a labeling heuristic algorithm based on
the SPPRC (Shortest Path Problem with Resource Constraints) (Irnich
& Villeneuve, 2006), which avoids cycles and compares routes with a
simple dominance rule based on the total reduced cost; 2) an exact
method that follows the ESPPRC rules as proposed by Feillet et al.
(2004), which makes sure that we do not miss any promising routes
with negative reduced cost. Given the complexity of the ESPPRC, we
have imposed a time limit within which the algorithm is expected
to return a set of best solutions or an empty route if none is found.
Subsequently, in the ‘RouteProposals’({(𝑘, 𝑝,𝑤𝑝

𝑘)} message (line 20), the
vehicle agent transmits to the coordinator a set of its best feasible routes
{𝑝} along with their associated profits 𝑤𝑝

𝑘, thus preserving vehicle
privacy.

The messages ‘GraphInfo’, ‘AssignedRoute’, ‘StopRouteFinding’, and
‘Acknowledged’ are crucial for the synchronization between the coor-
dinator and the vehicle agents. These messages serve as synchroniza-
tion points between the asynchronous algorithms. The communication
system must ensure that these messages have been received timely
and orderly before proceeding. If the coordinator does not receive
an ‘Acknowledged(k,msg)’ from a vehicle, it is considered broken. The
coordinator agent generates a ’Vehicle_breakdown{k}’ event, adding its
pending tasks to the set of optional tasks 𝑁4.

5. Use case and functional experiments

In this Section, we first demonstrate the functioning of the proposed
DIMASA architecture for DVRP-FPTW through a use case example
and then discuss its computational complexity and demonstrate its
scalability through extensive functional experiments.

5.1. Use case example

Consider the scenario illustrated in Fig. 2. Suppose we have a set of
10 tasks that must be served. The fleet is composed of 3 homogeneous
vehicles initially positioned at depot {0}, as shown in Fig. 2(a). In phase
1 of the DIMASA architecture, an initial routing plan is found. This plan
assigns each vehicle to a specific set of tasks, resulting in the following:

• Vehicle 1: Route [0, 4, 6, 10, 8, 0] with a profit of 97.31.
• Vehicle 2: Route [0, 5, 9, 3, 1, 0] with a profit of 165.78.
• Vehicle 3: Route [0, 2, 7, 0] with a profit of 106.35.

Vehicle 1 starts its route, but at time 𝑧𝑒 = 20, while it is serving task
6, it breaks down and does not send the 𝐴𝑐𝑘𝑛𝑜𝑤𝑙𝑒𝑑𝑔𝑒𝑑(1, 𝑚𝑠𝑔) message
after receiving the 𝐺𝑟𝑎𝑝ℎ𝐼𝑛𝑓𝑜() message from the coordinator agent,
Fig. 2(b). The coordinator agent generates a 𝑉 𝑒ℎ𝑖𝑐𝑙𝑒_𝑏𝑟𝑒𝑎𝑘𝑑𝑜𝑤𝑛{1}
event. This event triggers adding vehicle 1’s pending tasks [8, 10] into
the set of optional tasks 𝑁4. The coordinator removes vehicle 1 from
the set of functioning vehicles 𝐾 ′.

In this scenario, the task sets are 𝑁1 = [4, 6, 5, 9, 2, 7], 𝑁2 = [9, 7],
𝑁3 = [3, 1] and 𝑁4 = [8, 10], and the private information of the vehicles
is:

• Vehicle 1: 𝑠1 = 6, 𝑣6 = 21.12, 𝑦1 = 50.00, 𝐷′
1 = 75.32, 𝑄′

1 = 37.0.
• Vehicle 2: 𝑠2 = 9, 𝑧𝑒2 = 𝑣9 = 24.04, 𝑦2 = 118.97, 𝐷′

2 = 90.87, 𝑄′
2 =

41.0.
• Vehicle 3: 𝑠3 = 7, 𝑧𝑒3 = 𝑣7 = 22.04, 𝑦3 = 121.22, 𝐷′

3 = 77.95, 𝑄′
3 =

32.0.
9

x

The coordinator agent solves the DRMP (19)–(24) considering the
previous routes of the remaining operational vehicles 𝐾 ′ = {2, 3},
Fig. 2(c), aiming at finding appropriate route modifications. Phase 2 of
our DIMASA architecture obtains the solution illustrated in Fig. 2(d):

• Vehicle 2 had no tasks added, maintaining its pending route
[9, 3, 1, 0] with an initially planned profit of 165.78.

• Vehicle 3 was added tasks 10 and 8 into its new route [7, 10, 8, 0]
with an updated profit of 167.33.

As may be seen from this example, the proposed DIMASA archi-
tecture enables us to effectively manage unexpected events, such as a
vehicle breakdown.

The proposed solution approach is designed to solve a class of
problems that are known as NP-hard, which means that there is no
efficient way to find the optimal solution in general, nor is there a ter-
mination criterion that ensures finding a solution. However, in practice,
the DIMASA architecture works very well and can find solutions in a
relatively short amount of time, which is shown next in the functional
experiments.

5.2. Functional experiments

In this Section, we evaluate the performance of the proposed DI-
MASA architecture. In phase 1, the proposed SYSCA and VRP-FPTW
algorithm are implemented in the coordinator agent that interacts with
the DRGV algorithm implemented in each of the vehicle agents. In
phase 2, the coordinator’s DSYSCA and the DVRP-FPTW algorithm are
in interaction with the DRGV algorithm implemented in each of the
vehicle agents. We compare the results of the proposed distributed
multi-agent solution approach for the proposed DVRP-PFPTW problem
with those derived from the centralized monoblock model (Centr.),
(6)—(18). The results of the centralized model are obtained using the
Gurobi 10.0.2 solver with gurobipy Python library with a time limit of
one hour. We run the simulation experiments on an Intel Xeon Gold
6226R1 virtualized cluster with 16 CPUs, 32 GB of RAM and a clock
frequency of 2.9 GHz.

Although the centralized model offers quality of solution guaran-
tees, its suitability diminishes in inherently distributed vehicle fleet
environments due to high computational complexity, as shown by our
simulation results. This is why we evaluate our proposed approach also
by comparing its results with those obtained from a heuristic that we
propose in this paper and name Systematic Cheapest Insertion (SCI),
Algorithm 6.

The SCI Algorithm inserts optional tasks into pre-determined routes
of the operational vehicles as long as their profits improve, starting
from the least profitable one. Initially, the algorithm sorts the set of
operational vehicles 𝐾 ′ into the set 𝑠𝑜𝑟𝑡𝑒𝑑_𝐾 ′, arranging them in non-
decreasing order based on their obtained profits (line 2). Then, for
each vehicle in the ordered set 𝑠𝑜𝑟𝑡𝑒𝑑_𝐾 ′, the algorithm iteratively
attempts to insert each optional unassigned task 𝑛 ∈ 𝑁𝑢𝑎

4 while keeping
track of the task 𝑛𝑚𝑎𝑥 with the best profit 𝑤𝑚𝑎𝑥 (lines 3–23). Function
𝑖𝑛𝑠𝑒𝑟𝑡(𝑣, 𝑝, 𝑛) attempts insertion of task 𝑛 among any two vertices within
the route 𝑝 of vehicle 𝑘, while satisfying the time window, autonomy,
and capacity constraints and returns the route 𝑝𝑛𝑒𝑤 with the highest
profit 𝑤𝑛𝑒𝑤, if any (line 9). If at least one insertion is feasible, the func-
tion returns the best updated route 𝑝𝑛𝑒𝑤 and the maximum associated
profit 𝑤𝑛𝑒𝑤; otherwise, it returns (∅, 0), meaning the insertion is not
feasible. Then, if the profit of the found path 𝑤𝑛𝑒𝑤 is higher than the
best profit found so far 𝑤𝑚𝑎𝑥, the best path 𝑝𝑚𝑎𝑥 and the inserted task
𝑛𝑚𝑎𝑥 are updated (lines 10–13). When all unassigned tasks have been
tested for vehicle 𝑘, if its route 𝑝𝑘 has been updated with task 𝑛𝑚𝑎𝑥
(lines 16–19), task 𝑛𝑚𝑎𝑥 is removed from the set of unassigned tasks

1 https://www.intel.es/content/www/es/es/products/sku/199347/intel-
eon-gold-6226r-processor-22m-cache-2-90-ghz/specifications.html

https://www.intel.es/content/www/es/es/products/sku/199347/intel-xeon-gold-6226r-processor-22m-cache-2-90-ghz/specifications.html
https://www.intel.es/content/www/es/es/products/sku/199347/intel-xeon-gold-6226r-processor-22m-cache-2-90-ghz/specifications.html
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Fig. 2. Example of the execution of the dynamic approach when vehicle 1 breaks down in the middle of its route.
𝑁𝑢𝑎
4 (line 17). Route 𝑝𝑚𝑎𝑥 with the highest nonnegative profit margin

𝑤𝑚𝑎𝑥 in respect to the previously assigned route 𝑝𝑘 becomes the new
updated route (line 18), and vehicle 𝑘 is reinserted into the ordered
set 𝑠𝑜𝑟𝑡𝑒𝑑_𝐾 ′ based on its updated profit (line 19). If the route has
not been updated (line 21), the current route is retained, and route
data 𝑃 ′ is updated with the current route 𝑝𝑚𝑎𝑥 with associated profit
𝑤𝑚𝑎𝑥 for vehicle 𝑘. The algorithm terminates when 𝑠𝑜𝑟𝑡𝑒𝑑_𝐾 ′ is empty,
i.e. when all operational vehicles have been considered and returns
the set of new updated routes for each. This implies that there are no
more unassigned optional tasks in 𝑁𝑢𝑎

4 that can improve the profits of
operational vehicles if inserted in their routes.

Contrary to the DIMASA architecture, the proposed SCI algorithm
does not allow the exchange of obligatory tasks between vehicles to
obtain better solutions and its efficiency depends on the order of the
tasks in the unassigned optional task set 𝑁𝑢𝑎

4 .

5.2.1. Benchmark instances for the static VRP-FPTW
The proposed DVRP-PFPTW is a new problem that was not studied

previously. Therefore, there are no relevant state-of-the-art bench-
marks. Consequently, in this Section, we provide the strategy for cre-
ating them as well as a set of publicly accessible2 benchmark instances
together with a set of relevant Key Performance Indicators for the
DVRP-FPTW problem.

2 https://github.com/aitorls/DVRP-PFPTW-instances.git
10
Inspired by the generation of benchmark instances (Li et al., 2009;
Solomon, 1987; Soriano et al., 2023; Uchoa et al., 2017), we consider
a 2-dimensional Euclidean space [0, 100] × [0, 100], with a single depot
located in the center of this space, i.e., at (50, 50) and multiple task
vertices distributed uniformly randomly over the same. The distance
matrix 𝐝 = {𝑑𝑖𝑗 |(𝑖, 𝑗) ∈ 𝐴} is created based on the Euclidean distance
between each pair of vertices in the given space. For simplicity, we
assume that the cost and travel times matrix for each vehicle is equal
to the distance matrix. The parameters related to tasks include their
location coordinates (𝑥, 𝑦), demand, revenue and time windows. Tasks
demand is uniformly randomly distributed between 1 and 10 and task
revenue between 10 and 100. The vehicle parameters include the
number of vehicles, the cost, velocity, autonomy, and capacity.

Feasibility and binding constraints. In the creation of benchmark in-
stances, we ensure that the autonomy, capacity, and timing constraints
are binding by specifically adjusting the values of time windows [𝑙𝑖, 𝑢𝑖]
for each task 𝑖 as well as autonomy 𝐷𝑘 and capacity 𝑄𝑘 for each vehicle
𝑘. Defining these values is still an open challenge for the capacitated
VRP (Uchoa et al., 2017). This is essential since if the problem is
too constrained, it might not be feasible, while if it is too loose, the
constraints that distinguish this problem from the capacitated VRP will
not be considered. Thus, the parameters of the proposed instances
are determined in such a manner that they strike a balance between
being sufficiently restrictive to enforce the binding nature of associated
constraints and yet guaranteeing the presence of a feasible solution.

https://github.com/aitorls/DVRP-PFPTW-instances.git
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Algorithm 6: Systematic Cheapest Insertion (SCI) Algorithm
Input: 𝑁4 - Set of optional tasks, 𝐾 ′ - Set of operational

vehicles, Previous route data - 𝑃 = {(𝑘, 𝑝𝑘, 𝑤
𝑝
𝑘) | 𝑘 ∈ 𝐾 ′}.

Output: New route data - 𝑃 ′ = {(𝑘, 𝑝𝑚𝑎𝑥, 𝑤𝑚𝑎𝑥) | 𝑘 ∈ 𝐾 ′}.
1 Initialization: 𝑃 ′ ← ∅; 𝑁𝑢𝑎

4 ← 𝑁4;
2 𝑠𝑜𝑟𝑡𝑒𝑑_𝐾 ′ ← 𝑠𝑜𝑟𝑡(𝐾 ′);
3 while |𝑠𝑜𝑟𝑡𝑒𝑑_𝐾 ′

| > 0 do
4 𝑘 ← 𝑠𝑜𝑟𝑡𝑒𝑑_𝐾 ′.𝑝𝑜𝑝(0);
5 𝑝𝑚𝑎𝑥 ← 𝑝𝑘;
6 𝑤𝑚𝑎𝑥 ← 𝑤𝑝

𝑘;
7 𝑛𝑚𝑎𝑥 ← 𝑁𝑜𝑛𝑒;
8 for each 𝑛 ∈ 𝑁𝑢𝑎

4 do
9 (𝑝𝑛𝑒𝑤, 𝑤𝑛𝑒𝑤) ← 𝑖𝑛𝑠𝑒𝑟𝑡(𝑘, 𝑝, 𝑛) ;
10 if 𝑝𝑛𝑒𝑤 ≠ ∅ && 𝑤𝑛𝑒𝑤 > 𝑤𝑚𝑎𝑥 then
11 𝑤𝑚𝑎𝑥 ← 𝑤𝑛𝑒𝑤;
12 𝑝𝑚𝑎𝑥 ← 𝑝𝑛𝑒𝑤;
13 𝑛𝑚𝑎𝑥 ← 𝑛;
14 end
15 end
16 if 𝑛𝑚𝑎𝑥 ! = 𝑁𝑜𝑛𝑒 then
17 𝑁𝑢𝑎

4 ← 𝑁𝑢𝑎
4 ⧵ {𝑛𝑚𝑎𝑥};

18 𝑝𝑘, 𝑤
𝑝
𝑘 ← 𝑝𝑚𝑎𝑥, 𝑤𝑚𝑎𝑥;

19 𝑠𝑜𝑟𝑡𝑒𝑑_𝐾 ′ ← 𝑠𝑜𝑟𝑡(𝑠𝑜𝑟𝑡𝑒𝑑_𝐾 ′ ∪ {𝑘});
20 else
21 𝑃 ′ ← 𝑃 ′ ∪ {(𝑘, 𝑝𝑚𝑎𝑥, 𝑤𝑚𝑎𝑥)};
22 end
23 end
24 return P’

The procedure we use is as follows. First, the region of interest
s partitioned into |𝐾| sections, where |𝐾| is the number of vehicles.
he partition is made similarly to a cake-cutting approach, starting
rom the depot in the center and adding |𝐾| equidistant rays where
he angle between the rays is 360∕|𝐾| and the depot belongs to every
reated partition, as seen in Fig. 3. Then, we compute the optimal
oute for serving all the task vertices from the depot 0 by a single
ehicle in each of these sections by solving the traveling salesman
roblem (TSP). Note that these routes only take into account the
istances, but not the vehicle autonomy and capacity nor the task time
indows. The information related to each of the |𝐾| found TSP routes

eaving from and returning to the depot 0 includes a sequence of task
ertices, the time needed to serve each of them, the total distance
raveled, and the route’s accumulated task demand. The route with the
aximum accumulated demand among all routes defines the capacity,

nd similarly, the route with the maximum distance among all routes
efines autonomy for each vehicle. To set the time windows for each
ask, we first determine the center of its time window as the arrival time
n the previously found TSP route. Next, we define the time window
imits for each task vertex in the same order as the one along each
ound TSP route. Specifically, the first service time 𝑙𝑖 for each task
𝑖 ∈ {1,… , |𝑉 |−1} is set as the center time of the previous served vertex
and 𝑢𝑖 is set as the center time of the next vertex. In the case of the first
task vertex leaving from the depot, 𝑙𝑖 is set to the departure time from
the depot, and in the case of the last task vertex 𝑖 in the route before the
depot, 𝑢𝑖 is set to the arrival time at the depot. We set the first service
time 𝑙0 of the depot to 0 while its last service time 𝑢0 is the maximum
of the last service times of any task plus the time to return from this
task to the depot 𝑢0 = max𝑖∈𝑁{𝑢𝑖 + 𝑡𝑖0𝑘}, where vehicle 𝑘 is the one that
serves task 𝑖.

In this way, we make sure that the problem has at least one feasible
solution and that the autonomy, capacity, and timing constraints are
binding. We give an example in Fig. 3, with a randomly generated
graph in 2-dimensional space in Fig. 3(a), the resulting partitioning of
11
the space in Fig. 3(b), and the optimal TSP solutions for such parti-
tioned space in Fig. 3(c). Moreover, for the same instance, in Fig. 4, we
give the optimal solution of (1)-(10) in López-Sánchez et al. (2023a),
found with the Gurobi solver, Fig. 4(a). Additionally, in Fig. 4(b), we
provide the solution for that instance found by the proposed DIMASA
Phase 1 approach.

The presented benchmark specification is used for the creation of
the instances that are named SFPTW_N_K_X, where S stands for static,
FPTW is the proposed kind of the VRP problem, 𝑁 is the number of
task vertices (25, 50, 75 and 100), K is the number of vehicles (5, 10,
15 and 20). X ranges from 1 to 10 and represents the instance number.
The number of vehicles is chosen to maintain the |𝑁|∕|𝐾| ratio (the
verage number of tasks served by a vehicle). The proposed instances
re publicly accessible on GitHub.3

.2.2. Benchmark instances for the DVRP-FPTW
In the benchmark creation for the dynamic VRP-FPTW problem, we

se the same structure as in the previous instances but extend it with
ynamic events that happen throughout the route. The two possible
vents that we consider in the experiments are the appearance of new
asks and vehicle breakdowns that can occur at any time 𝑡 ≤ 𝑢0. When
vehicle breaks down, we assume that it will not be repaired in the

onsidered time horizon. New tasks are defined by their coordinates
𝑥, 𝑦), demand 𝑞, revenue 𝑟, and time windows [𝑙, 𝑢]:

𝑒𝑤_𝑡𝑎𝑠𝑘 ∶< 𝑛𝑎𝑚𝑒, 𝑡, (𝑥, 𝑦), 𝑞, 𝑟, [𝑙, 𝑢] >,

hile the vehicles that break down with :

𝑒ℎ𝑖𝑐𝑙𝑒_𝑏𝑟𝑒𝑎𝑘𝑑𝑜𝑤𝑛 ∶< 𝑘, 𝑡 > .

sually, the addition of new tasks occurs in batches, as in real-world
cenarios where tasks often accumulate before being introduced into
he system. In this paper, we only conduct experiments on the break-
own of a functional vehicle, because, in this case, the associated
asks’ vertices are removed from the mandatory tasks set and added
o the optional set. The benchmark instances for the DVRP-FPTW are
amed DFPTW_N_K_X, where N, K, and X represent the number of
asks, vehicles, and problem instances, respectively. These instances are
imilar to the static case, but they also include a list of predetermined
vents that take place during the execution of the simulation.

As presented in Section 3.2, the proposed DVRP-FPTW model con-
iders mandatory tasks that are part of the taken route, and optional
asks that might be considered for inclusion in the route if and only
f they bring benefit to a vehicle. Thus, if a new task appears close to
he maximum return time to the depot 𝑢0, the remaining vehicles may
ot have enough time to accommodate them. Similarly, if the capacity
nd/or autonomy of a vehicle is too limited, they may not be able to
erve this task. To show the effectiveness of our Dynamic VRP-FPTW
lgorithm, we allocate the events of vehicle breakdown at the beginning
f the execution plan. This allows for flexibility in the reassignment of
asks to vehicles.

Specifically, we differentiate between scenarios where the best-off
highest profit) vehicle, the worst-off vehicle, and a randomly chosen
ehicle suffers a breakdown. By examining these three different cases,
e evaluate the performance and adaptability of our algorithm in
ifferent profit-based scenarios.

To validate that the proposed approach is able to reassign the
ptional tasks while not worsening the vehicles’ profits, within the
ime and autonomy constraints, we compare our real-time dynamic
lgorithm with the exact solution, considering a one-hour computation
ime limit. The objective of this comparison is to evaluate the impact
f having more time to reassign vehicles, where an hour of waiting to
ecalculate the route is not applicable in dynamic environments. This
llows us to evaluate the effectiveness of our algorithm’s approach to

3 https://github.com/aitorls/DVRP-PFPTW-instances

https://github.com/aitorls/DVRP-PFPTW-instances
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Fig. 3. Example of generation of the parameters for the VRP-FPTW with 9 consumer vertices and 3 vehicles.
Fig. 4. Examples of optimal solutions for a given instance with the DIMASA Phase 1 .
react to unpredicted events, thus, achieving a dynamically adaptable
real-time solution. Additionally, we also compare our approach by
increasing the revenue of the optional tasks (extra revenue), to 10000
unit each. Thanks to these experiments, we incentivize vehicles to
perform optional tasks when autonomy and time window constraints
allow, thereby obtaining an upper limit on the number of optional tasks
that can be visited.

5.2.3. Experimental results
Next, we compare the performance of the two phases of the DIMASA

architecture with the benchmark centralized models.

DIMASA phase 1 results. The results obtained for the static VRP-FPTW
benchmark instances are presented in Tables 2 and 3. In these tables,
we report the results achieved by the two models (Phase 1 and Centr.)
within a one-hour time limit. For each instance and method, we provide
12
the instance name (Name), the worst-off vehicle profit among all the
vehicles (Worst-off), the computation time in seconds (Time) or a star
(*) if the one-hour limit is reached, the best upper bound for the
worst vehicle’s profit (UB) which is the value of the linear relaxation
of the models, and the overall profit collected for all the vehicles
(Overall). Optimal solutions, where the worst profit and the upper
bound value are equal, are highlighted in bold. In Table 2, we observe
that for instances with 25 tasks and 5 vehicles, the exact centralized
model (Centr.) achieves the optimal solution for all 10 instances with
an average computation time of 3.3 s, while our proposed Phase 1
approach achieves the optimal solution in 9 out of 10 instances with an
average computation time of 0.8 s. On the instances with 50 tasks and
10 vehicles, the centralized model only obtains the optimal solution in
3 instances (SFPTW_50_10_[0,7,8]) with an average computation time
of 1814 s. On the other hand, the DIMASA Phase 1 obtains the optimal
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Table 2
Static FPTW benchmark results.

Name Approach Worst-off UB Overall Time

SFPTW_25_5_0 Centr. 78.38 78.38 525.16 6.54
Phase 1 78.38 – 534.43 0.42

SFPTW_25_5_1 Centr. 120.69 120.69 662.09 15.38
Phase 1 118.42 – 718.72 0.84

SFPTW_25_5_2 Centr. 51.61 51.61 672.36 0.83
Phase 1 51.61 – 677.58 0.60

SFPTW_25_5_3 Centr. 74.68 74.68 649.80 6.61
Phase 1 74.68 – 633.42 1.18

SFPTW_25_5_4 Centr. 97.80 97.80 718.65 0.58
Phase 1 97.80 – 713.80 0.49

SFPTW_25_5_5 Centr. 17.21 17.21 533.99 0.40
Phase 1 17.21 – 550.16 0.86

SFPTW_25_5_6 Centr. 97.05 97.05 651.54 0.89
Phase 1 97.05 – 651.57 1.68

SFPTW_25_5_7 Centr. 58.45 58.45 487.85 0.51
Phase 1 58.45 – 466.95 0.65

SFPTW_25_5_8 Centr. 91.02 91.02 829.23 0.36
Phase 1 91.02 – 829.23 0.76

SFPTW_25_5_9 Centr. 103.52 103.52 838.70 0.93
Phase 1 103.52 – 840.28 0.70

SFPTW_50_10_0 Centr. 67.60 67.60 1273.24 2006.28
Phase 1 67.60 – 1287.87 8.48

SFPTW_50_10_1 Centr. 151.26 161.54 1574.17 *
Phase 1 137.50 – 1574.64 8.57

SFPTW_50_10_2 Centr. 141.98 147.38 1488.08 *
Phase 1 127.05 – 1564.56 9.59

SFPTW_50_10_3 Centr. 94.24 129.82 1232.44 *
Phase 1 55.60 – 1260.26 12.90

SFPTW_50_10_4 Centr. 142.29 175.51 1678.82 *
Phase 1 133.54 – 1661.76 53.82

SFPTW_50_10_5 Centr. 129.63 147.05 1386.70 *
Phase 1 111.65 – 1308.03 13.28

SFPTW_50_10_6 Centr. 112.04 166.62 1500.76 *
Phase 1 83.08 – 1577.97 22.09

SFPTW_50_10_7 Centr. 24.12 24.12 1406.72 64.25
Phase 1 24.12 – 1415.14 7.62

SFPTW_50_10_8 Centr. 53.02 53.02 1384.81 3372.55
Phase 1 53.02 – 1319.68 8.24

SFPTW_50_10_9 Centr. 141.55 149.51 1577.79 *
Phase 1 111.39 – 1595.87 12.89
solution for the same 3 instances, but in an average time of 8 s. For
the remaining instances with 50 tasks, the centralized model yields an
average of 14.2% higher profit for the worst-off vehicle compared to
our DIMASA Phase 1 solution. However, DIMASA finds the solution
with an average computation time of 15.748 s, while the average
computation time of the centralized model is 3064 s. For 3 out of 10
instances with 75 tasks and 15 vehicles, the centralized model (Centr.)
does not get any solution in one hour of computation time, Table 3.
This is the case for instances SFPTW_75_15_1_[0,2,6]. Finally, when
we increase the number of tasks to 100, the centralized model does
not find any solution for these instances, we skip the rows where no
solution is found. In these cases, it can only provide us with the best
bound obtained with the solver. The DIMASA Phase 1, on the other
hand, always finds a solution in less than 2 min for instances with
75 tasks with an average computation time of 55 s, and less than
15 min for instances with 100 tasks, with an average computation time
of 5.85 min. For the instances where the solution of the centralized
algorithm is unknown, we use the best-bound value and determine that
the theoretical gap between the obtained DIMASA Phase 1 solution and
the value of the linear relaxation is within 30%. This is a theoretical
bound that in practice might be significantly lower since, in general,
the optimum value is not known. To further improve the performance,
the DIMASA Phase 1 solution may be introduced into a branch-and-
price algorithm to find the optimal solution. However, the average
gap between the DIMASA Phase 1 and the centralized method for the
instances for which the centralized solution did find a solution is less
than 15%.

In summary, the computation time of the proposed DIMASA Phase 1
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solution approach is significantly better than the one of the centralized
model, especially as the number of agents and/or tasks increases. Even
more, the fleet on average receives a larger profit from the DIMASA
Phase 1 than from the centralized and exact VRP-FPTW model in
Gurobi solver. Obtaining the exact solution with the centralized model
is intractable. For 75 tasks and 5 vehicles, it does not find any solution
in 1 h for 3 out of 10 tested instances, while for 100 tasks and 20
vehicles, it does not find a solution for any instance. The proposed
DIMASA Phase 1 approach, on the other hand, obtains solutions for
all tested instances within less than 15 min with an average gap with
respect to the exact solution of the centralized model of less than 15%,
when it is identified.

DIMASA phase 2 results. In Tables 4, 5, and 6, we report the results
for the Dynamic VRP-FPTW problem with 100 tasks and 20, 30, and
40 vehicles, respectively. For each experiment, we compare the SCI
solution, the Phase 2 solution, the centralized dynamic solution, and
the solution with more revenues in the optional tasks. We also report
the information of the dynamic instance, such as the static instance
name SFPTW_N_K_X where N, K and X are the number of tasks, vehicles,
and instance number, the broken vehicle (B. vehicle), the broken time
(B. time), the finish expected time of the vehicle (exp. finish), the
last time to return to the depot for all the vehicles (𝑢0), the current
value of the worst-off vehicle (Worst-off), the number of tasks of the
broken vehicle that it planned to serve (Plan) and, lastly, the number
of tasks left without serving due to vehicle breakdown (Remain). The
DIMASA Phase 2 solution columns give the objective function value,
that is profit of the worst-off vehicle (Worst-off), the number of tasks
that can be reassigned to another vehicle (Ressign), and the time to

obtain the solution, expressed in seconds (Time). The SCI columns
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Table 3
Static FPTW benchmark results.

Name Approach Worst-off UB Overall Time

SFPTW_75_15_0 Centr. – – – *
Phase 1 102.98 169.89 2313.25 56.77

SFPTW_75_15_1 Centr. 174.17 – 2760.73 *
Phase 1 162.77 203.91 2759.00 64.21

SFPTW_75_15_2 Centr. – – – *
Phase 1 124.38 178.36 2398.53 47.34

SFPTW_75_15_3 Centr. 116.58 – 2083.51 *
Phase 1 96.85 161.16 2089.09 72.39

SFPTW_75_15_4 Centr. 139.05 175.43 2339.88 *
Phase 1 123.82 – 2432.46 31.08

SFPTW_75_15_5 Centr. 139.74 – 2434.89 *
Phase 1 125.71 178.10 2375.72 51.61

SFPTW_75_15_6 Centr. – – – *
Phase 1 106.91 183.88 2398.75 73.47

SFPTW_75_15_7 Centr. 66.24 – 2164.58 *
Phase 1 62.00 170.01 2276.58 37.68

SFPTW_75_15_8 Centr. 137.24 – 2277.05 *
Phase 1 124.06 169.61 2304.81 59.13

SFPTW_75_15_9 Centr. 145.35 199.14 2597.43 *
Phase 1 145.90 – 2740.77 54.23

SFPTW_100_20_0 Phase 1 154.53 191.65 3456.50 233.09
SFPTW_100_20_1 Phase 1 158.34 218.35 3859.57 449.89
SFPTW_100_20_2 Phase 1 150.07 200.28 3503.05 609.41
SFPTW_100_20_3 Phase 1 125.13 182.87 3188.60 811.43
SFPTW_100_20_4 Phase 1 120.19 163.05 2961.78 204.06
SFPTW_100_20_5 Phase 1 80.48 206.47 * 485.43
SFPTW_100_20_6 Phase 1 123.20 179.18 3327.81 101.37
SFPTW_100_20_7 Phase 1 132.61 200.05 3443.45 209.58
SFPTW_100_20_8 Phase 1 138.43 195.29 3376.28 152.66
SFPTW_100_20_9 Phase 1 148.77 193.61 3419.45 248.20
report the same values for the solutions obtained by the Systematic
Cheapest Insertion. The DIMASA Phase 2 (extra revenue) columns show
that this approach increases the revenues of the optional tasks. The
worst-off column reports the actual reward value that the worst vehicle
would get. Finally, the last set of columns is the statistics related to
the resolution of the centralized formulation (6)–(18) with Gurobi. The
three columns are associated with the same statistics as in DIMASA
Phase 2.

The results show that the Phase 2 approach is very effective in han-
dling dynamic vehicle breakdown scenarios when the broken vehicle is
the worst-off in terms of profit. In average the Phase 2 approach can
find a solution in less than 18.55 s on average, and the profit of the
worst-off vehicle is only 3.2% lower than the centralized solution in one
hour. Moreover, the Phase 2 approach can reassign 54% of the optional
tasks that could be reassigned, compared with 44% for the centralized
solution, due to the time limit.

Analyzing the experiments for different numbers of vehicles, we
can see that the average difference in profits weighted with respect
to the centralized approach does not show a clear tendency as the
number of vehicles increases, varying from 4.1% with 20 vehicles to 1%
with 30 vehicles and 4.7% with 40 vehicles. Similarly, the differences
in the percentage of optional tasks reassigned do not seem to vary
significantly for different numbers of vehicles (41% with 20 vehicles,
72% with 30 vehicles and 57% with 40 vehicles). The differences
are probably more due to the specific difficulties to reassign optional
tasks. In terms of computation time, one cannot notice a significant
difference.

Comparing the results with those obtained by the SCI heuristic, the
Phase 2 algorithm achieves better results in the worst-off profit and
reassignment of the remaining tasks for all the instances. An interest-
ing observation is that in some examples where no new tasks were
reassigned by CI and Phase 2, such as SFPTW_100_20_1 with broken
vehicle 9, the worst-off vehicle value obtained by SCI remains the
same 158.34 and those in Phase 2 manage to improve it by swapping
tasks between the remaining vehicles up to 162. Thus, the model can
effectively reorganize the tasks, even though optional tasks cannot be
14

included.
The results obtained by artificially increasing the rewards of the
optional tasks are very illustrative. In cases where the worst-off vehicle
is the same in both the Phase 2 and Phase 2 (extra revenues) columns,
this indicates that the algorithm has not been able to accommodate op-
tional customers in the worst-off vehicle’s route likely due to constraints
like time windows, autonomy, or capacity. Conversely, if the worst-
off value decreases, it means that the vehicle has prioritized optional
tasks over its mandatory ones, leaving them among the other vehicles,
potentially resulting in negative profits for extreme cases. There is only
one case in the experiments where the profit of the worst-off improves
(SFPTW_8 with broken vehicle 6), this is the case where the worst-off
vehicle includes optional tasks without giving up the mandatory tasks.
On the other hand, when we look at the average value of reassigned
tasks, it is more significant. With more revenue in the optional tasks,
the algorithm can reassign 62.9% of them. This also implies that
the other 37.1% of optional tasks may not be reassigned due to the
constraints of autonomy, time or capacity. Thus, compared with the
original algorithm without extra revenue, the Phase 2 approach can
reassign 54% of the optional tasks, which means that it can reassign
85.5% of the possible unassigned optional tasks (54/62.9 = 0.855).

The main advantage of the Phase 2 approach is that it can quickly
adapt to the dynamic vehicle breakdown situation and generate a
feasible solution in real time. This is a significant advantage over the
centralized approaches that have to start the planning from scratch. The
Phase 2 approach can make timely decisions and reduce the impact of
unforeseen events on the overall performance of the fleet.

6. Conclusions and future work

Focusing on open challenges in agriculture cooperative fleet rout-
ing, this paper proposed a centralized and decomposed mathematical
model with the related DIMASA distributed solution approach for the
new DVRP-FPTW problem.

Aiming at serving tasks in their required time windows and re-
specting their demands and vehicle autonomy, the proposed problem
requires adapting to unforeseen events dynamically while systemati-

cally optimizing the egalitarian social welfare of the fleet. Our approach
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Table 4
Comparison of the results between the DIMASA Phase 2 approach and the exact centralized algorithm over the static instances SFPTW_100_20_X with 100 tasks and 20 vehicles
where X is the number of instance.

Dynamic Instance SCI Phase 2 Phase 2 (extra revenues) Centralized dynamic solution

X B. vehicle B. time Exp. time 𝑢0 Worst-off Plan Remain Worst-off Reassign Time Worst-off Reassign Time Worst-off Reassign Time Worst-off Reassign Time

0 vehicle_2 49.00 117.01 220 154.52 4 3 156.99 1 0.74 159.66 2 5.15 126.7 2 4.94 159.66 2 80.44
0 vehicle_12 28.18 117.80 220 154.52 5 4 154.53 1 0.8 154.53 1 26.99 24.45 2 16.96 163.27 3 *
0 vehicle_15 39.85 130.46 220 154.52 7 6 156.99 2 0.86 159.66 3 12.77 −19.95 3 12.26 160.43 2 *
1 vehicle_8 19.92 118.14 210 158.34 5 4 162.22 4 0.74 177.95 4 47.76 67.68 4 48.74 192.04 4 *
1 vehicle_9 43.48 115.64 210 158.34 7 5 158.34 0 0.86 162.17 0 7.58 162.17 0 7.09 163.67 0 79.82
1 vehicle_5 34.41 132.73 210 158.34 6 5 158.34 2 0.76 167.05 2 13.78 95.59 2 17.30 192.04 4 *
2 vehicle_17 35.18 118.93 220 150.07 4 2 150.27 0 0.8 150.27 0 11.12 88.1 1 11.21 167.55 1 109.07
2 vehicle_5 24.08 97.46 220 150.07 7 6 150.07 4 0.87 166.70 6 38.77 53.85 6 38.60 175.47 5 *
2 vehicle_15 14.04 108.16 220 150.07 7 6 150.07 1 0.75 154.82 2 68.99 −14.98 3 66.53 180.21 2 *
3 vehicle_9 49.07 127.87 210 125.13 4 2 135.75 0 0.77 137.35 0 14.04 72.58 1 3.01 146.50 1 41.18
3 vehicle_8 32.28 136.54 210 125.13 7 5 137.35 3 0.87 145.83 3 13.56 −8.93 4 13.94 148.24 3 1178.10
3 vehicle_11 27.46 111.65 210 125.13 5 4 125.13 2 0.73 147.07 3 19.56 75.39 3 21.20 148.24 3 *
4 vehicle_19 31.76 127.81 210 120.19 5 4 121.74 2 0.84 121.74 3 39.16 79.68 4 37.97 127.30 1 *
4 vehicle_12 46.33 103.82 210 120.19 7 5 120.19 2 0.71 120.19 2 12.28 120.19 4 14.58 121.74 1 38.76
4 vehicle_13 55.00 136.36 210 120.19 5 4 120.19 1 0.69 121.74 2 3.92 111.74 2 4.35 121.74 1 57.66
5 vehicle_8 59.00 124.44 210 80.48 3 2 116.67 1 0.71 116.67 1 1.74 116.67 1 1.59 116.67 1 4.43
5 vehicle_18 27.76 113.93 210 80.48 8 6 80.48 1 0.84 80.48 1 18.28 80.48 1 18.75 80.48 1 81.48
5 vehicle_17 60.34 115.25 210 80.48 4 2 80.48 2 0.82 80.48 2 1.66 62.13 2 1.51 80.48 1 4.07
6 vehicle_3 60.11 123.80 200 123.20 5 4 127.5 2 0.65 127.50 2 2.14 78.22 2 2.17 127.50 2 7.97
6 vehicle_13 24.18 129.06 200 123.20 6 4 123.2 0 0.84 123.99 1 32.74 4.4 1 29.00 142.45 1 960.04
6 vehicle_9 42.06 133.34 200 123.20 7 6 123.2 2 0.75 123.20 2 10.70 52.49 3 11.28 123.20 2 109.51
7 vehicle_1 3.61 109.39 210 132.61 3 2 143.3 0 0.81 151.09 1 49.70 128.99 1 49.78 166.94 1 *
7 vehicle_12 34.80 138.33 210 132.61 6 4 132.61 0 0.87 149.77 0 22.06 135.45 0 23.26 156.51 0 *
7 vehicle_8 61.39 129.99 210 132.61 6 3 143.3 0 0.68 143.42 0 1.60 143.42 0 1.44 143.42 0 4.98
8 vehicle_7 46.59 127.08 220 140.92 6 3 142.25 2 0.84 144.61 2 5.43 0.01 3 6.03 146.32 2 41.46
8 vehicle_15 41.83 145.40 220 140.92 8 5 140.92 0 0.75 142.04 0 12.73 140.92 1 13.21 143.55 0 66.41
8 vehicle_16 38.28 105.75 220 140.92 5 4 140.92 1 0.8 142.04 1 17.13 57.67 2 16.07 148.79 1 656.04
9 vehicle_4 45.89 104.28 220 148.77 4 3 152.25 2 0.85 154.20 2 4.71 101.47 2 4.15 154.20 1 490.71
9 vehicle_12 16.12 98.04 220 148.77 5 4 148.77 0 0.73 149.68 1 45.49 149.66 1 47.47 152.39 0 *
9 vehicle_17 64.00 111.75 220 148.77 3 2 155.59 1 0.73 158.27 1 1.14 158.27 1 1.14 159.00 1 3.74

Mean 38.5 120.34 213 133.42 5.46 3.96 136.98 1.3 0.78 141.13 1.66 18.73 81.48 2.06 18.18 147 1.56 1460
Table 5
Comparison results between the Phase 2 approach and the exact centralized algorithm over the static instances SFPTW_100_30_X with 100 tasks and 30 vehicles, where X is the
number of instance.

Dynamic Instance SCI Phase 2 Phase 2 (extra revenues) Centralized dynamic solution

X B. vehicle B. time Exp. time 𝑢0 Worst-off Plan Remain Worst-off Reassign Time Worst-off Reassign Time Worst-off Reassign Time Worst-off Reassign Time

0 vehicle_25 39.00 77.28 220 71.44 2 1 73.65 1 1.11 76.24 1 20.11 18.39 1 25.02 78.06 1 *
0 vehicle_21 17.46 136.32 220 71.44 7 6 73.65 3 1.14 80.47 5 51.31 −86.17 6 58.97 83.17 3 *
0 vehicle_26 12.21 32.17 220 71.44 3 2 71.44 2 1.2 83.99 2 71.08 6.91 2 58.40 71.44 0 *
1 vehicle_23 40.20 120.06 210 80.94 4 3 83.91 1 1.06 89.70 1 13.30 −11.16 1 12.24 89.70 1 1554.43
1 vehicle_17 45.61 98.97 210 80.94 4 2 80.94 2 1.06 88.31 2 4.80 88.31 2 4.80 89.70 2 704.76
1 vehicle_29 61.72 133.81 210 80.94 3 2 80.94 1 0.99 80.94 1 1.29 76.53 1 1.28 80.94 1 2.34
2 vehicle_25 16.03 44.43 220 79.56 2 1 80.72 1 1.16 81.76 1 62.27 31.63 1 63.70 86.89 1 *
2 vehicle_17 48.47 148.80 220 79.56 5 3 80.85 1 0.77 81.65 2 4.94 51.86 3 4.67 81.65 1 305.75
2 vehicle_7 52.25 106.00 220 79.56 4 2 80.85 2 0.86 85.94 2 3.15 −28.56 2 3.22 85.94 2 50.82
3 vehicle_15 26.57 101.54 200 70.43 3 2 74.21 1 1.18 75.37 2 30.69 −31.48 2 32.04 75.63 2 *
3 vehicle_30 37.06 123.41 200 70.43 8 5 70.43 2 1.0 74.94 3 8.34 31.74 3 8.55 74.94 2 210.32
3 vehicle_27 60.81 129.94 200 70.43 3 2 70.43 1 0.61 74.94 1 0.93 74.94 1 0.92 74.94 1 2.08
4 vehicle_10 50.00 119.14 200 59.57 3 2 60.16 2 1.0 64.07 2 4.86 −5.42 2 4.98 67.85 2 736.85
4 vehicle_26 52.54 108.03 200 59.57 4 2 59.57 2 1.03 59.57 2 3.30 59.57 2 3.37 60.16 0 36.22
4 vehicle_4 31.14 76.21 200 59.57 4 3 59.57 1 1.13 59.57 1 27.21 59.57 2 23.98 0.00 0 *
5 vehicle_20 52.40 137.43 210 65.57 3 2 87.47 0 0.98 87.54 0 2.72 87.54 0 2.74 87.54 0 33.97
5 vehicle_2 55.00 114.70 210 65.57 4 2 65.57 2 0.76 65.57 2 1.73 −30.72 2 1.73 65.57 2 4.99
5 vehicle_21 30.00 75.07 210 65.57 3 2 65.57 2 1.15 65.57 2 37.21 40.24 2 19.53 65.57 2 767.18
6 vehicle_3 51.24 112.99 200 62.01 5 3 66.46 1 0.93 66.46 1 2.45 38.5 2 2.34 66.46 0 7.98
6 vehicle_17 52.55 128.67 200 62.01 5 4 66.46 2 0.88 62.01 2 2.01 −14.46 3 2.01 66.46 1 6.30
6 vehicle_13 22.47 122.23 200 62.01 3 2 62.01 2 1.2 70.90 2 31.76 −14.18 2 30.70 74.51 2 *
7 vehicle_9 60.99 127.08 210 79.92 5 3 82.41 1 0.78 82.41 3 1.3 42.23 3 1.23 82.41 2 3.01
7 vehicle_23 45.18 98.99 210 79.92 4 2 79.92 2 1.12 79.92 2 6.19 22.33 2 5.98 82.57 0 *
7 vehicle_15 17.20 40.85 210 79.92 2 1 79.92 1 1.18 80.26 1 58.59 −43.81 1 59.91 0.00 0 *
8 vehicle_6 33.24 97.44 220 64.56 2 1 64.82 0 1.12 70.23 1 23.35 70.36 1 26.83 75.56 1 *
8 vehicle_23 41.05 102.29 220 64.56 5 4 64.82 2 1.12 71.61 2 16.62 −53.64 2 16.91 72.58 2 *
8 vehicle_21 47.43 102.98 220 64.56 2 1 64.56 1 1.05 64.56 1 5.58 45.53 1 5.27 67.59 1 595.65
9 vehicle_4 57.14 132.74 210 70.26 4 3 71.3 1 0.91 71.30 1 1.56 9.34 1 1.85 71.30 1 4.40
9 vehicle_7 20.62 124.38 210 70.26 3 2 70.26 2 1.12 73.59 2 47.75 −36.37 2 40.40 74.77 2 *
9 vehicle_2 37.07 87.63 210 70.26 4 2 70.26 1 1.18 70.26 2 15.69 70.26 2 15.81 70.26 1 311.25

Mean 40.48 105.38 210 70.42 3.76 2.4 72.10 blue1.46 1.02 74.65 1.73 18.74 18.99 1.90 17.98 75.45 1.23 1625.3
15
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Table 6
Comparison results between the Phase 2 approach and the exact centralized algorithm over the static instances SFPTW_100_40_X with 100 tasks and 40 vehicles, where X is the
number of instance.

Dynamic Instance SCI Phase 2 Phase 2 (extra revenues) Centralized dynamic solution

X B. vehicle B. time Exp. time 𝑢0 Worst-off Plan Remain Worst-off Reassign Time Worst-off Reassign Time Worst-off Reassign Time Worst-off Reassign Time

0 vehicle_16 42.76 109.52 220 39.48 2 1 42.29 0 1.33 42.29 0 9.33 42.29 0 9.52 42.29 0 *
0 vehicle_30 39.85 111.92 220 39.48 5 4 39.48 1 1.26 41.72 1 11.68 −5.39 2 10.61 37.65 0 *
0 vehicle_24 3.00 37.72 220 39.48 2 1 39.48 0 1.57 43.58 0 64.51 43.58 0 65.07 41.72 0 *
1 vehicle_27 85.00 99.42 210 46.16 1 0 53.35 0 0.33 53.35 0 0.22 53.35 0 0.22 53.35 0 0.17
1 vehicle_1 47.16 93.59 210 46.16 4 2 46.16 2 1.11 49.89 2 5.94 30.26 2 6.02 49.89 2 501.70
1 vehicle_37 61.00 89.10 210 46.16 2 1 47.92 1 0.92 47.92 1 1.13 47.92 1 1.14 47.92 1 2.55
2 vehicle_35 21.02 42.05 220 40.95 1 0 42.17 0 1.51 43.00 0 43.80 43.0 0 44.07 40.80 0 *
2 vehicle_10 8.25 51.40 220 40.95 3 2 42.17 2 1.56 43.00 2 77.38 −29.19 2 70.62 0.00 0 *
2 vehicle_5 65.00 145.56 220 40.95 3 2 42.17 0 0.66 42.17 0 0.70 −9.0 1 0.70 42.17 0 1.43
3 vehicle_1 31.78 91.69 200 37.04 2 1 37.8 1 1.43 37.80 1 16.61 26.11 1 15.98 0.00 0 *
3 vehicle_7 46.44 125.68 200 37.04 5 3 38.29 1 1.17 38.29 1 5.41 −51.34 1 5.56 38.71 1 448.38
3 vehicle_9 32.70 102.01 200 37.04 3 2 37.04 1 1.34 38.29 1 15.59 4.31 1 13.47 38.71 1 *
4 vehicle_11 17.72 36.11 200 22.88 2 1 23.99 0 1.52 27.56 0 27.91 −8.97 1 34.90 0.00 0 *
4 vehicle_5 55.00 59.47 200 22.88 1 0 23.99 0 1.0 23.99 0 1.56 23.99 0 1.54 23.99 0 5.00
4 vehicle_2 52.00 115.53 200 22.88 3 2 24.75 2 0.92 24.75 2 2.55 24.75 2 2.34 24.75 2 52.67
5 vehicle_40 33.62 86.26 210 46.13 2 1 49.65 1 1.36 46.70 1 15.34 42.45 1 14.61 49.74 1 *
5 vehicle_5 39.20 129.69 210 46.13 3 2 46.13 1 1.28 46.13 2 7.25 46.13 2 7.05 48.83 2 1946.09
5 vehicle_25 17.46 105.70 210 46.13 3 2 46.7 2 1.48 47.15 2 42.28 −6.52 2 42.15 51.00 2 2758.92
6 vehicle_36 38.47 106.35 190 30.64 3 2 31.07 0 1.3 31.08 1 10.50 −49.6 1 9.83 40.03 1 *
6 vehicle_5 61.31 125.50 190 30.64 5 3 31.08 1 0.76 31.08 1 0.67 31.08 2 0.67 31.08 1 1.07
6 vehicle_35 26.17 88.02 190 30.64 2 1 30.65 1 1.39 31.08 1 19.09 27.27 1 26.77 40.03 1 *
7 vehicle_9 57.01 136.91 210 36.09 3 2 38.59 0 0.84 38.59 0 1.05 38.59 0 1.04 42.47 0 3.04
7 vehicle_29 55.07 120.69 210 36.09 3 2 36.09 1 0.88 36.09 1 1.37 36.09 1 1.35 36.09 1 3.91
7 vehicle_36 43.38 99.69 210 36.09 2 1 36.09 1 1.16 36.09 1 7.38 30.74 1 6.92 36.09 1 1319.40
8 vehicle_13 22.83 45.65 220 35.35 1 0 36.85 0 1.53 38.61 0 27.40 38.61 0 27.50 0.00 0 *
8 vehicle_5 37.58 101.00 220 35.35 4 3 37.34 1 1.15 37.34 1 10.44 −13.31 1 10.30 45.07 2 357.91
8 vehicle_28 10.44 66.24 220 35.35 2 1 35.35 1 1.6 37.34 1 42.04 36.85 1 43.84 0.00 0 *
9 vehicle_37 29.21 109.70 200 39.48 2 1 41.02 1 1.33 41.02 1 18.98 5.46 1 19.74 44.96 1 *
9 vehicle_29 27.02 85.91 200 39.48 3 2 39.49 2 1.43 41.02 2 29.64 −8.85 2 26.59 43.61 2 *
9 vehicle_20 27.00 40.00 200 39.48 1 0 39.49 0 1.35 41.02 0 28.07 41.02 0 27.80 43.61 0 *

Mean 37.81 91.93 208 37.42 2.6 1.5 38.55 0.8 1.21 39.48 0.86 18.19 19.66 0.99 18.26 40.34 0.73 2177.71
focuses on iterative maximization of the profit of the least profitable
vehicle in a non-decreasing order of vehicle profitability across the
fleet.

The proposed DVRP-FPTW problem and the DIMASA solution ap-
proach are particularly relevant to real-world agriculture cooperative
fleets composed of tractors and agrirobots, focusing on both fairness
and efficiency among individually rational vehicle owners with limited
funds, each one owning a single vehicle and farmers owning multiple
crop fields. In this context, each vehicle disposes of private information
that it should not share with others and the dynamic route generation
time is relatively short.

While preserving the vehicles’ privacy, the DIMASA architecture,
composed of vehicle agents and a coordinator agent that works in two
phases, efficiently and effectively solves the static and dynamic VRP-
FPTW, as demonstrated through the performed simulation experiments.
The solution is achieved through distributed decision-making for col-
umn generation between vehicle agents and the coordinator agent that
solves the restricted master problem by using the SYSCA algorithm in
(static) phase 1 and the DSYSCA algorithm in (dynamic) phase 2. Each
vehicle agent, on the other hand, uses the proposed DRGV algorithm to
iteratively and dynamically find its good paths (columns) in response to
the updated shadow prices of the coordinator. Our dynamic solution ap-
proach extends the static VRP-FPTW to handle real-time contingencies,
such as changes in tasks or vehicle breakdowns.

We tested our approach in simulation experiments on a newly
proposed set of benchmark instances that we created for the static and
dynamic VRP-FPTW problem and showed that the DIMASA architecture
solutions are generally of high quality and are more flexible, robust,
fast, and fair than the solutions obtained through the proposed cen-
tralized model solved through Gurobi solver. Moreover, the distributed
DIMASA approach is ideal for cooperative vehicle-sharing scenarios,
protecting intrinsically decentralized and private vehicle information
while avoiding reliance on a unique decision maker. However, the
16

solution quality is heavily dependent on the quality of communication
between the coordinator and vehicle agents, performed by synchronous
and asynchronous message exchange. This can be implemented through
message queues in each agent, with the additional advantage that the
system will become more resistant to communication channel break-
downs or other contingencies in message exchange (e.g., message loss
or out-of-order delivery).

We showed through simulation that the proposed DIMASA approach
is computationally efficient, scalable, and suited for large cooperative
fleets, responding in close-to real time to unpredicted contingencies on
the terrain.

Future work. In future work, we will consider real-world agriculture co-
operatives and their data, where we will analyze the influence of the pa-
rameters and variables on the solution’s efficiency and the computation
time.

The requirements for communication and addressing technical is-
sues in the real world are beyond the scope of this paper and will be
addressed in future work. Furthermore, we plan to create models for
systematic optimization of the egalitarian social welfare considering
ownership of multiple vehicles by a single owner or multiple owners
for a single vehicle.

A central coordinator agent is a bottleneck for the scalability and
robustness of the proposed solution but guarantees the quality of the
solution. A multi-agent architecture where vehicle agents coordinate
in a completely decentralized manner while maintaining quality of
solution guarantees remains an open issue.

We also consider to extend our model and architecture to accom-
modate open peer-to-peer fleets, allowing vehicles to dynamically join
or leave the system as needed. In this context, it is reasonable to
assume that strategic vehicle owners may deceive information shared
regarding their vehicle agents to maximize their profits. Considering
the potentially extensive size of these peer-to-peer fleets, we recognize
the importance of studying scalable, strategy-proof vehicle routing

algorithms within this framework.
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Finally, our forthcoming plans involve refining the proposed DVRP-
FPTW model and the DIMASA architecture by integrating vehicle im-
plements (tools). This expansion aims to address the need to integrate
multi-functional reconfigurable agrirobots that effortlessly switch be-
tween detachable implements like plows, harvesters, and more during
operations. Together with the proposed DIMASA architecture, this in-
novative solution will mark a pivotal advancement, and significantly
increase the overall efficiency and adaptability of the agricultural
autonomous vehicle fleet routing.
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