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Abstract

Computational fabrication technologies have revolutionized manufacturing by offer-
ing unprecedented control over the shape and material of the fabricated objects at
accessible costs. These technologies allow users to design and create objects with
arbitrary properties of motion, appearance or deformation. This rich environment
spurs the creativity of designers and produce an increasing demand for computer-
aided design tools that alleviate design complexity even for non-expert users.

Motivated by this fact, in this thesis, we address the computational design and
automatic fabrication of flexible structures, assemblies of interrelated elements that
exhibit elastic behavior. We build upon mechanical simulation and numerical op-
timization to create innovative computational tools that model the attributes of
the fabricated objects, predict their static deformation behavior, and automatically
infer design attributes from user-specified goals.

With this purpose, we propose a novel mechanical model for the efficient simula-
tion of flexible rod meshes that avoid using numerical constraints. Then, we devise
compact and expressive parameterizations of flexible structures, that naturally pro-
duce coherent designs. Our tools implement inverse design functionalities based on
a sensitivity-based optimization algorithm, which we further extend to deal with lo-
cal minimum solutions and highly constrained problems. Additionally, we propose
interaction approaches that guide the user through the design process. Finally, we
validate all these contributions by developing computer-aided design solutions that
facilitate the creation of exible rod meshes and Kirchho�-Plateau surfaces.

In the first part of this work, we overview the relevant foundations of mechanical
simulation, analyze the optimization problem that arises from inverse elastic design
and discuss alternative solutions. Then, in the second part, we propose a computa-
tional method for the design of flexible rod meshes that automatically computes a
fabricable design from user-defined deformation examples. Finally, in the last part,
we study the design and fabrication of Kirchhoff-Plateau surfaces and present a tool
for interactively exploring the space of fabricable solutions.
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Chapter 1

Introduction

This thesis deals with the computational design of exible structures. We build
upon mechanical simulation and numerical optimization to develop computer-aided
design tools that facilitate the creation ofexible rod meshesand Kirchho�-Plateau
surfaces. For this purpose, we de�ne compact parameterizations that determine the
geometry and material of the structures; propose novel mechanical models that allow
us to accurately and e�ciently predict their deformed shape in static equilibrium;
and devise optimization methods for the automatic inference of design attributes
from user-de�ned functional goals. This chapter provides a brief introduction on
these topics, focusing on the challenges that have been faced during the development
of the thesis, and the contributions that resulted from its completion.

1.1 Computational design

Computational fabrication technologies like 3D printing o�er unprecedented control
over the shape and materialattributes of the fabricated objects, with generally little
additional cost dependent on object complexity. This enables an extremely fast
transition from virtual prototypes to physical realizations. For these reasons, these
technologies have already reached an enormous impact on industrial engineering,
where rapid prototyping of all kinds of products, from furniture to vehicle parts, is
already leading to cost reductions and e�ciency gains. In addition, computational
fabrication has also \democratized" production tools and brought them closer to
designers, due to their relatively low purchase and material costs. Having full control
over the geometry and material complexity enables the production of objects with
arbitrary properties of motion, appearance or deformation, among others. Designers
are ultimately responsible for creating the \design" or pattern for the construction
of an object considering aesthetic, functional or economic goals.

1



2 1.1. Computational design

However, humans are limited in their ability to handle design complexity. For
instance, they may lack the understanding of the underlying process that drives the
deformation of an object; or it may be too costly to analytically predict the e�ect
of a texture on the reectance of the material. In general, regardless of the level
of expertise of the design team, a typical product goes through an iterative process
of analysis, design, prototyping and evaluation that is extremely time consuming.
With computational fabrication technologies being now accessible to the public and
massively adopted in industry, there is an increasing demand of computational tools
that alleviate the burden of design complexity, coming from potential users with a
broad range of expertise levels.

Over the last decade, a large part of the computer graphics community has
engaged in responding to this demand, taking advantage of the community's sci-
enti�c heritage. The pursuit of realistic real-world representations has led to data
structures for geometry and attribute representation; algorithms for image analy-
sis, synthesis and simulation; and human-computer interaction techniques. All this
interdisciplinary knowledge has been combined into computer-aided design (CAD)
solutions with the purpose of facilitating the design of fabricable objects.

Modern computational design solutions o�er four major functionalities (Fig. 1.1):

1. Modeling design attributes. This implies the de�nition of a design space, i.e.,
�nding a computational representation of the possibly complex geometry and
material attributes that determine the fabricated object. In this sense, there is
a preference for exhaustive but compact models that naturally produce \good"
designs yet facilitate user control.

2. Predicting the properties of the fabricated object for a given design. This
has been calledforward designand it replaces the costly and time consuming
design cycle. A user knows in advance the mapping from design attributes to
resulting properties, which allows extremely fast iterations without the need
for physical realizations. Forward design involves building a computational
model of the underlying process governing the properties of the object for
simulation (e.g., mechanical elasticity for elastic deformation).

3. Inferring the design of the object that produces some target user-de�ned prop-
erties. This is the opposite functionality to forward design and has been called
inverse design. This feature aims to replace {or at least reduce the need for{
expert knowledge. The user is not required to know the details of the design,
but only to specify the properties that the fabricated object should ful�ll (e.g.,
balance, stability or buoyancy). Through numerical optimization of the com-
putational model built for prediction, the computer infers the corresponding
geometry and material attributes that give rise to user speci�cation.
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4. Guiding the design process. In some design problems, it is not even clear
which is the solution space, i.e., the range of properties that can be achieved
by fabricable objects. Understanding of the solution space may be achieved
by �nding high-level descriptors of fabricable properties, so that the user can
easily control them to de�ne targets for inference. Nevertheless, more sophisti-
cated implementations may directly allow designers to virtually navigate only
the space of fabricable solutions, and even suggest alternative paths to spur
the user's creativity.

Figure 1.1: Modern computational design solutions provide computational models to rep-
resent design attributes and fabricated object properties, and implement numerical meth-
ods allowing the user to navigate both spaces through forward and inverse design.

Fabrication-oriented design tools proposed during the last few years feature some
or all of these functionalities. We have witnessed computational methods for design-
ing objects that can stand on their own [1], spin stably [2] or sound in a speci�c
manner [3]. It is also possible to create mechanical characters capable of interesting
motions [4] and produce 3D-printable robotic creatures [5] or telescoping struc-
tures [6]. And the list goes on. This rich environment creates fertile ground for
creativity which will go even further in the future, when computational fabrication
technologies become progressively more accessible to the public.

Overview

In this thesis, we deal with the computational design and automatic fabrication of
exible structures: assemblies of {potentially heterogeneous{ interrelated elements
that exhibit elastic behavior. With the development of these methods, we contribute
on each of the functionalities mentioned above: i) we build compact parameteri-
zations of complex structures composed of elastic rods and fabrics; ii) we devise
mechanical models that allow the prediction of their deformation behavior; iii) we
create optimization methods that automatically infer fabricable designs from user-
de�ned functional goals; and iv) we propose interaction approaches that empower
the user with further understanding and facilitate navigation of the solution space.
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In the following sections, we give a brief overview on these topics, introducing
the scienti�c and technical challenges that we have addressed, and reviewing the
contributions that we have developed.

1.2 Designing exible structures

The design and fabrication of deformable objects has been an integral part of human
history since the origins of clothing. The adaptability of deformable materials allows
compliant tools to remain functional in dynamic and constrained environments, and
to safely interact with life forms and fragile objects. Soft materials are being used
increasingly more often for the production of toys, apparel, furniture, architecture
or robots, among others.

Originally limited to rigid materials, computational fabrication methods have
recently opened the door for fast prototyping of deformable objects. While rigid
designs merely require the speci�cation of the geometry, the behavior of a deformable
object is also heavily inuenced by the spatial distribution of material attributes.
This poses a grand challenge on computer-aided design as it is non-trivial to model
the continuum mechanics that drive the relationship between the local combination
of geometry and materials, and the corresponding global deformation behavior.

This topic has received increased attention from the computer graphics com-
munity over the last few years. Most of the works di�erentiate from each other
in how they de�ne the computational model that represents the design space. This
characteristic is typically determined by the fabrication technology that is being em-
ployed. For instance, some works use a discrete combination of template materials
with di�erent deformation behaviors [7]. Other works focus on changing the overall
shape of the objects to determine their deformation properties [8, 9]. Multi-material
printing technologies allow us to consider an heterogeneous spatial distribution of
material attributes [10, 11]. Nevertheless, several recent works are based on de�ning
small-scale geometry attributes to overcome the use of a single base material [12, 13].
Alternatively, other works have focused on creating interactive solutions that allow
the user to rapidly navigate the space of fabricable designs [14, 15, 16]

The design and fabrication methods developed in this thesis are in line with the
two latter groups of works. We aim for reducing fabrication complexity by using a
single material, and we rely on local geometry changes to determine the deformation
behavior of the exible structures. The interrelation between the components of the
assembly poses further challenges for the de�nition of the design space, which must
be compact, tractable, expressive, and it must naturally produce coherent designs.
At the same time, we favor approaches that enable the designers to de�ne the
properties of the fabricated objects either using high-level descriptors or interactive
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techniques. The latter imposes and additional challenge in terms of performance.

Forward and inverse design functionalities heavily rely on mechanical simulation
and elastic shape design through numerical optimization. These are the two foremost
technical challenges that must be overcome for the computational design of exible
structures.

1.2.1 Mechanical simulation

The computational design of deformable objects relies on mechanical simulation to
accurately predict which will be the static deformation properties of a given design
once fabricated. The creation of analytical models to explain the behavior of real-
world phenomena has been traditionally addressed by classical physics. Engineering
�elds have been devoted to the development of computational model and numerical
methods that allow computers to predict the behavior of materials and structures. In
the last few decades, since the pioneering work by Terzopoulos et al. [17], computer
graphics has heavily contributed to the innovation in this area motivated by the
creation of realistic virtual representations of real-world phenomena.

Our work deals with the design and fabrication of exible structures composed
of elastic rods and fabrics. The accurate simulation of the elastic behavior of fabric
has been successfully tackled in the past [18, 19]. Similarly, several discrete elastic
models have been suggested for the simulation of individual rods [20, 21]. However,
modeling the deformation behavior of an assembly of elements, possibly of a diverse
nature, has not been addressed so often: the structure should remain consistent and
the di�erent components should interact with each other adequately, i.e., point forces
and rotational torques are transferred. In this thesis, we develop simple yet accurate
computational models for the simulation of elastic rod meshes [22], in chapter 5, and
tensile structures [23], in chapter 6. In both cases, we aim for creating solutions that
satisfy two main requirements:

� Given some material characterization, simulations are experimentally vali-
dated to ensure that models produce accurate predictions of the elastic be-
havior of the structure, more precisely, its shape in static equilibrium.

� Simulations are e�cient and avoid using numerical constraints for the coupling
between the di�erent elements. This is preferable so that the computational
model lends itself well to numerical optimization, as this is necessary for inverse
design.

Although developed in the context of a computer-aided design tool, these com-
putational models might be of great use in other scenarios where an e�cient yet
accurate simulation is needed, e.g., animation or video games. In chapter 3, we
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review the foundations of mechanical simulation and provide a detailed explana-
tion of all the models used for the development of this thesis, including our own
contributions.

1.2.2 Inverse elastic design

Our tools feature inverse design operators that automatically determine attributes
of the elastic structures such that their deformed shapes in static equilibrium meet
some user-speci�ed goal. Solving this problem constitutes a very hard challenge for
two reasons:

1. Any feasible deformed shape of the structure must be in static equilibrium.
This imposes a hard constraint on the solution space and limits the satisfaction
of user-speci�ed goals, which will be infeasible in most cases.

2. Similarly, the fabrication technology imposes bounds on the design space, as
often it is not possible to use arbitrary fabrication materials or arbitrarily
complex geometry.

The associated constrained optimization problem heavily relies on mechanical
simulation and has been repeatedly formulated throughout the extensive literature
on computational design of deformable objects [7, 14, 10, 16, 24, 25]. Standard
numerical optimization methods could be used to solve such problems, but they often
do not guarantee �nding a good solution. Together with an appropriate de�nition of
the design and solution spaces, challenges come with the selection of the particular
optimization approach. In this thesis, we adopt an approach based on the iterative
navigation of the equilibrium constraint manifold, similar to [14, 26]. Built upon
this idea, we make additional contributions to deal with two problems:

1. Local minimum solutions . In the context of exible rod meshes (chapter 5),
we identify the attributes of the design space having the largest e�ect on the
reduction of the bulk �tting error, and we propose a multi-resolution algorithm
that incrementally considers additional design parameters using interpolation.

2. Highly constrained problems . In the context of Kirchho�-Plateau surfaces
(chapter 6), we propose a two-step algorithm to interactively explore the so-
lution space of highly constrained problems, for which user-speci�ed goals are
generally too far from being feasible.

Optimization challenges similar to ours are common across many other design
problems, and other authors might �nd inspiration in our solutions to face their own
challenges. In chapter 4, we formally characterize our shape optimization problem,
and we discuss other alternative solving approaches.
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1.3 Flexible rod structures

Rods are curve-like elastic bodies that have one dimension ("length") much larger
than the others ("section"). Assemblies of rods are extensively used in structure
engineering, where rigid truss structures are specially valued for their light weight,
high sti�ness and low cost in terms of transport, storage and assembly time [27, 28].
Their exible counterpart are called active-bending structures, and appear in com-
bination with elastic membranes for the creation of tensile structures that provide
more design freedom and reduce the amount of external supports needed [29, 30].
The use of rod-like structures has been mainly restricted so far to architectural ge-
ometry applications, and has just started to receive attention from the computer
graphics community for more general design applications like minimizing printing
material [31] or producing wire meshes [32], reciprocal frames [33] and tensegri-
ties [34], among others.

Figure 1.2: In this thesis, we explore the computational design and fabrication of two
instances of elastic rod assemblies: exible rod meshes (left) and Kirchho�-Plateau surfaces
(right).

Nevertheless, these structures are still underused and, as we demonstrate in this
thesis, might �nd many other potential applications. We validate our computa-
tional tools with the design and fabrication of two di�erent instances of exible rod
structures: exible rod meshesand Kirchho�-Plateau surfaces (Fig. 1.2).

1.3.1 Flexible rod meshes

Flexible rod meshes are assemblies of elastic rods. These structures are lightweight,
relatively low-cost and can also form the support structure of solid objects if �lled or
dressed with other materials. But most importantly, the global deformation prop-
erties of a rod mesh can be adjusted simply by locally varying the cross-sectional



8 1.3. Flexible rod structures

properties of the rods, i.e., the radii. Consequently, a heterogeneous deformable ob-
ject can be fabricated in one piece and from a single base material. This constitutes
a key feature in the current scenario of low-cost consumer level printing machines.

In chapter 5, we consider exible rod meshes as an implementation of deformable
surfaces and push the limits of their expressive power. Our computational tool takes
as input several poses of a deformable surface with known boundary conditions and
automatically computes the rod mesh that best approximates the desired shapes.
From several deformation instances with di�erent elasticity properties, we seek a
unique design that generalizes all the behaviors. From the design perspective, this
facilitates producing complex deformation features like anisotropy, heterogeneity and
model merging. In order to solve the associated optimization problem, we propose a
simulation-based approach where the selection of the design space and the de�nition
of a proper optimization strategy are essential.

In this thesis, we have explored the potential of exible rod meshes for toy and
apparel design, but they might also �nd potential application in other �elds like
furniture design, soft-robotics, orthotics or wearable assistance.

1.3.2 Kirchho�-Plateau surfaces

Kirchho�-Plateau surfaces (KPS) are planar rod meshes embedded in pre-stretched
fabric that deploy into complex three-dimensional shapes. In their deformed state,
these structures consist of a combination of piece-wise minimal surface patches,
i.e., patches shaped as the surface of minimum area that spans a given boundary.
Furthermore, such boundaries can only assume shapes corresponding to the static
equilibrium of a planar rod mesh under membrane tension. These seemingly complex
shapes may attract the attention from the design and research communities for two
main reasons:

� From an application point of view, minimal surfaces are appreciated for their
smooth aesthetic appearance and inherent material e�ciency and structural
stability. Minimal surfaces are widely used for light-weight and cost-e�cient
structures, ranging from large-scale roofs, canopies and shade systems, to
acoustic deectors, light di�users and decorative elements for interior design.

� From a theoretical point of view, at small scale, these structures can be easily
manufactured by 3D-printing planar rods onto stretched fabric, as recently
demonstrated by [35]. Being able to easily design and manufacture instances
of the Kirchho�-Plateau problem may intrigue theorists and designers that
have struggled with producing physical realizations.

From a design perspective, considering the highly constrained solution space, we
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cannot expect that there exists a design that closely approximates a user-de�ned
target shape, but nevertheless KPS provides ample room for shape abstraction,
interpretation and creativity.

In chapter 6, we turn away from fully-automated solutions in favor of a user-
guided but computer-assisted design paradigm. Here the user is responsible for
creating the topology of the rod mesh and for transforming it into the desired shape
using a set of modeling tools that implement editing operations directly on the
equilibrium state of the surface. We highlight a two-step optimization scheme which
is essential for the implementation of the inverse design functionality, which allows
the designer to e�ectively navigate the space of feasible solutions interactively. We
demonstrate our method by designing a diverse set of complex-shaped KPS, each
validated by a physically fabricated prototype.

1.4 Contributions and publications

The main contributions of this thesis are the following:

� A mechanical model for the accurate and e�cient simulation of exible rod
meshes that implicitly handles coupling between rods without requiring nu-
merical constraints or any additional degrees-of-freedom. (Chapter 3)

� A computational model for the representation of the design space of exible
rod meshes that is compact, expressive and naturally produces good quality
designs through Hermite interpolation. (Chapter 5)

� A multi-objective sensitivity-based optimization method for the inverse elastic
design of exible rod meshes. In combination with the previously mentioned
mechanical model and design space de�nition, it allows us to infer the design
attributes of a rod mesh such that its static equilibrium matches an arbitrary
number of user-de�ned goals with speci�c boundary conditions. (Chapter 5)

� A multi-resolution optimization strategy for improving the convergence of in-
verse elastic design problems, which adaptively increments the detail level of
the design space parameterization when needed. (Chapter 5)

� A computational model for the compact representation of the design space of
Kirchho�-Plateau surfaces that naturally handles coupling between rods and
fabric using collocation and Laplacian interpolation. (Chapter 6)

� A complete computational tool for the design of Kirchho�-Plateau surfaces
that features multiple editing operations a�ecting both the design and solu-
tion spaces. Such editing operations include: i) forward geometry and topology
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editing, with real-time feedback on the resulting deformation, ii) sensitivity-
based modal exploration of the solution space, iii) interactive inverse modelling
of the equilibrium shape with design constraint preservation, and iv) visual-
ization of mechanical properties for decision-making. (Chapter 6)

� A two-step optimization strategy based on incrementally exploring an approx-
imation to the solution space in order to de�ne close-to-feasible target defor-
mations for the inverse elastic design problem. (Chapter 6)

The results corresponding to the contributions of this thesis are compiled in the
following two works published as a �rst author in ACM Transactions on Graphics,
and presented at the ACM SIGGRAPH conference:

� Jes�us P�erez, Bernhard Thomaszewski, Stelian Coros, Bernd Bickel, Jos�e A.
Canabal, Robert Sumner, and Miguel A. Otaduy. 2015. Design and fabrication
of exible rod meshes.ACM Trans. Graph. 34, 4, Article 138 (July 2015).

� Jes�us P�erez, Miguel A. Otaduy, and Bernhard Thomaszewski. 2017. Compu-
tational design and automated fabrication of Kirchho�-Plateau surfaces.ACM
Trans. Graph. 36, 4, Article 62 (July 2017).

1.5 Outline

The rest of the thesis if organized as follows:

� Related work . Chapter 2 reviews the main works that have inspired and
inuenced the development of this thesis, grouping the extensive literature in
two general themes: mechanical simulation and computational design.

� Mechanical simulation . Chapter 3 overviews the relevant foundations of
mechanical simulation and describes in detail the mechanical models and nu-
merical solvers that have been developed in this thesis, focusing on rod-mesh
and thin-shell mechanics and the static equilibrium computation.

� Inverse elastic design . Chapter 4 presents a formal characterization of the
inverse elastic design problem, describes some numerical solving methods, and
analyzes the potential problems of their practical implementation, focusing on
sensitivity-based constraint exploration.

� Flexible rod meshes . Chapter 5 focuses on the computational design and
fabrication of exible rod meshes and describes the computational model and
optimization methods that facilitate the solution of the inverse design problem.
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� Kirchho�-Plateau surfaces . Chapter 6 explores the computational design
and fabrication of Kirchho�-Plateau surfaces and proposes a user-guided but
computer-assisted tool that allows a user to interactively design such struc-
tures.

� Conclusions . Chapter 7 contains a discussion on the limitations of the meth-
ods presented in this thesis, analyzing their potential impact and suggesting
possible future work.



12 1.5. Outline



Chapter 2

Related work

The design and fabrication of exible structures is an interdisciplinary subject inte-
grating knowledge across several related �elds. This chapter reviews the main works
that have inspired and inuenced the development of this thesis. We group this ex-
tensive literature in two general themes: mechanical simulation and computational
design.

� The �rst section 2.1 reviews works dealing with the creation of computational
methods for the simulation of mechanical systems. We focus on mechanical
modeling of elastic rods and thin shells, model coupling and numerical solving.

� The second section 2.2 groups many heterogeneous works related with compu-
tational design. We �rst categorize the literature according to several criteria
and briey review a few topics that are tangentially related with this thesis:
surface design, animation control, material characterization and exploration
of constrained spaces. We then focus on fabrication-oriented design problems
with special emphasis on rod structures and physical surfaces.

2.1 Mechanical simulation

Classical physics has traditionally addressed the creation of analytical models to
explain the behavior of real-world phenomena. From an engineering perspective,
mechanical simulation comprises the development of computational models and nu-
merical methods that allow computers to predict the behavior of materials and
structures. In the last few decades, since the pioneering work by Terzopoulos et
al. [17], computer graphics has heavily contributed to the innovation in this area
due to its never-ending pursuit of more realistic virtual representations of the real
world.

13
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This pursuit is motivated by di�erent purposes. Fabrication-oriented compu-
tational design, for example, often relies on mechanical simulation to accurately
predict how a given prototype will behave once fabricated. Our work deals with the
design and fabrication of deformable structures composed of elastic rods and fabric.
In the following, we will summarize the main computational models that have been
used for the simulation of elastic rods and thin shells and review the state of the
art. Then, we briey go over algorithms currently used to solve numerical integra-
tion problems derived from the partial di�erential equations of mechanics. Finally,
we will introduce a few more works dealing with the combination of potentially
heterogeneous models for the simulation of complex structure assemblies.

2.1.1 Elastic rod simulation

Rods are curve-like elastic bodies that have one dimension ("length") much larger
than the others ("section"). A great variety of rod simulation methods have been
presented in the literature. Many, including the earliest approaches, deal with the
e�cient simulation of hair, highly demanded in the VFX and video games industries.
These solutions are mostly based on mass-spring systems which explicitly represent
the curve as a sequence of nodes joined together by elastic springs [36, 37, 38, 39].
While these methods are capable of modeling resistance to stretch and bending,
their formulations do not come from the discretization of a continuous rod elasticity
model. Plus, they are limited in their ability to model twist, anisotropy and curls.

Alternatively, framed representations describe the con�guration of a rod by an
adapted framed curve. The assignment of a material frame to each point on the cen-
terline contains the requisite information for measuring the orientation of the rod
section and hence enables advanced features. The corresponding governing equations
{a set of partial di�erential equations together with boundary conditions{ were �rst
developed by Kirchho� and Clebsch [40] in their theory of thin elastic rods under
�nite displacements. Some works following this idea solve the statics and dynamics
of Kirchho� rods using an explicit centerline representation based on the discretiza-
tion of the Cosserat rod geometry model [41, 42, 20]. Other works however use an
implicit centerline representation and introduce reduced-coordinates models based
on a minimal parameterization needed to account for the exact kinematics for the
rods. Examples of these works are the solutions based on articulated rigid body
systems [43] or the super-helix model [44]. Relying on the Bishop frame,discrete
elastic rods (DER) and discrete viscous threads(DVT) by Bergou et al. [45, 46]
use a curve-angle parameterization to reduce the number of redundant parameters
and guarantee that the orientation frame naturally remains adapted to the center-
line. The latter approach constitutes the best starting point for our work, as it is
experimentally validated, and it lends itself well to numerical optimization, as we
demonstrate later in this thesis.
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Rod meshes are networks of elastic rods that are linked by joints. Not many works
before our own have addressed the simulation of this kind of structures. In general,
previous approaches are based on the use of numerical constraints during simulation
to ensure rods remain connected. Such is the solution by Bergou et al. [45], which
uses bodies rigidly attached to rods as joints. Elastic joints were considered in
Cosserat Netsby Spillman and Teschner [47], which extends the Cosserat model to
branched and looped topologies albeit at the expense of also using constraints. More
recent works have taken theposition-based dynamics(PBD) approach introduced
in [48] and adapted it to the simulation of elastic rod networks [49]. However, the
lack of a formal connection between the positional constraints used in PBD and
elasticity theory restricts the use of this solution to applications where a predictive
representation is not needed. As it will be further explained in this thesis, the
work presented in chapter 5 extends the DER model introducing a physically-based
elastic energy at connections. This allows the accurate simulation of rod mesh
mechanics without the need of numerical constraints, which reduce the complexity
of our optimization problem. A similar formulation was suggested later in the work
by Zehnder et al. [50] by adding rotational DoFs at each joint.

2.1.2 Thin-shell simulation

Thin shells are thin exible structures with a high ratio of width to thickness (e.g.
> 100). Thin shells have been also extensively studied by the computer graphics
community, focusing mainly on the e�cient and accurate modeling and simulation
of cloth mechanics. Cloth has exempli�ed advances in physics-based animation deal-
ing with a broad range of problems such as mechanical modeling, contact handling,
friction, plasticity, fracture and numerical integration, among others. In the follow-
ing, we will roughly review the most important works and mention a few current
hot topics. For a broad survey on cloth simulation we refer the reader to [18, 19].

Since the pioneering work on elastically deformable models by [51], the most
widely used simulation techniques were initially mass-spring systems [52] and more
general particle systems [53, 54]. The popularity of mass-spring systems is due to
the ease of implementation and low computational cost, but the accuracy o�ered by
this method is rather limited. As an alternative, continuum-based approaches lead
to a set of partial di�erential equations which have to be discretized in space, gen-
erally using the �nite element method (FEM). Most of the existing FE-approaches
are based on the geometrically exact thin-shells formulation by Simo et al. [55].
With this basic continuum formulation, simple isotropic materials can be simulated
consistently with reduced dependency on the speci�c discretization. Further works
incorporated novelties allowing to model increasingly more complex behaviors that
are observable on real-world textile materials such as anisotropy [56, 57, 58] and
nonlinear deformations [59, 60, 58]. As happened to rod simulation, many current
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works are based on position-based approaches such as [61, 62] but are not accurate
enough for fabrication-oriented design applications. Our work relies in the widely
known discrete shellsformulation [63] for the exural energy and the classicor-
thotropic St. Venant-Kirchho� constitutive model for the membrane energy (see
e.g. [64]).

Apart from the mechanical model, during the last few years, there have been
contributions in many other aspects of thin-shell simulation. To mention just a
few examples, some works have tried to overcome the limitations of spatial dis-
cretizations using remeshing methods [65], which have been successfully applied to
model complex phenomena such as folding [66] and fracture [67]. Other works have
addressed the problem of modeling and estimating cloth hysteresis as an e�ect of
the internal friction between yarns [68]. The augmentation of coarse cloth simula-
tions with realistic-looking wrinkles have also attracted considerable attention and
clustered a variety of solutions like subspace simulation using adaptive bases [69]
or procedural wrinkle creation based on the coarse strain tensor [70, 71]. Finally,
a promising research line related to both thin shells and rod mechanics proposes
the simulation of cloth at the yarn level [72, 73, 74, 75], which allows showing new
interesting e�ects and unprecedented levels of agreement to real-world materials.

2.1.3 Model coupling

This thesis deals with the computational design of structures composed by an assem-
bly of objects, possibly of a diverse nature. To accurately predict their deformation
behavior, it would be theoretically possible to use a single volumetric mechanical
model. However, to obtain precise enough results, that would require to employ-
ing a very �ne spatial discretization to e�ectively capture su�cient geometry detail
at each individual object scale. The resulting computational problem would be
intractable in most of the cases. As an alternative solution, computer graphics
research has often considered the use of di�erent mechanical models, conveniently
selected to take advantage of the speci�c kinematic and mechanical properties of
each individual object. For example, a rod mesh can be simulated as an assembly
of elastic rod models, as in chapter 5, or use a cloth model coupled to a rod mesh
model at speci�c locations to represent a tensile structure, as in chapter 6.

To guarantee that the structure remains consistent and the di�erent objects
interact with each other adequately, several coupling approaches have been explored
over the years. The simplest solution is the collocation of DoFs: all objects attached
to a given coupling area share their corresponding discretization variables. This
ensures point forces are shared and the structure remains consistent in any case.
However, rotational torques are not transferred and so this approach does not o�er
a complete solution for the interaction between parts. In the real world, structural
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joints are not just single points but volumetric components and, consequently, rigid
bodies are often placed at connections to mimic this fact. In some computer graphics
works, these joints have been explicitly represented with rotational DoFs [21, 50, 23],
while in others, the rotation of the joint is implicitly derived from the state of all the
attached elements [47, 22]. To ensure rotational torques are transferred, the attached
components must remain aligned with the rigid body at the connection point. The
straightforward solution is to employ soft or hard numerical constraints to enforce
this condition, as in e.g. [45, 47, 49]. In general, this approach has been extensively
used for modeling many phenomena in which any kind of continued attachment
between objects takes place, for instance, in frictional [76] and adhesive [77] contact.
An alternative to using constraints is the de�nition of physically-based energies,
whose derivation leads to elastic coupling forces [78, 22, 50, 23]. The resulting
joints are compliant, what, with an adequate material characterization, produces a
better agreement with the behavior of real-world structural joints, even under coarse
discretizations.

Nevertheless, model coupling is not only restricted to simple inertia transfer.
Many interesting e�ects have been achieved over the last few years by studying how
objects in a heterogeneous assembly interact with each other. For instance, a few
works have developed coupling methods between thin shells and deformable solids
that allow the simulation of skin sliding on top of the muscles [79], facilitate adding
high resolution wrinkles to coarse volumetric models [80], or model friction and air
e�ects between cloth and bodies [81]. In the context of model coupling, contact and
sliding have been an interesting convergence point for several works built around
the Eulerian-on-Lagrangian idea [82]. This method proposes the combination of
the two simulation methodologies in mechanics, i.e. Eulerian and Lagrangian. This
approach has been applied to formulate frictional contact models between rigid
bodies and strands [83] or cloth [84] that preserve contact contours independently
of the discretization level. A particularly interesting research line proposes the
simulation of cloth at the yarn level [74, 85, 75]. This approach assumes all yarns
share Lagrangian DoFs at their crossing points but are allowed to slide with respect
to each other using Eulerian coordinates. Consequently, there is no need to explicitly
handle contacts between yarns, and hence the simulation of large garments at the
yarn level is more tractable. In our case, the same methodology might be applied
in the future for the design of tensile structures with sliding components.

2.1.4 Numerical solving

Since the seminal work of Bara� et al [86], implicit methods have been the predom-
inant choice in computer graphics for rod and thin-shell dynamics simulation {and
in general for most physically-based animation problems. For a detailed overview
and comparison of existing integration schemes and their e�ciency {applied to cloth
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simulation{, the reader is referred to [87]. In our work, we have adapted the vari-
ational form of implicit Euler integration in [88] to solve dynamics, as well as the
corresponding Lagrangian mechanics formulation of the static equilibrium problem.
Recent approaches however have shifted towards position-based methods inspired by
works like the previously mentioned PBD [48] andprojective dynamicsby Bouaziz
et al. [89]. Initial implementations used positional constraints with no connection
to classical elasticity theory, e.g. [61, 90, 91, 92]. However, more recent solutions
like the one by Liu et al. [93] have formalized the connection between projective
dynamics and quasic-Newton methods, allowing to leverage ideas from numerical
optimization and thus support real-time simulation of many hyperelastic materials.

2.2 Computational design

From a general perspective, computational design deals with the creation of software
that facilitate design tasks. It roughly comprises the development of a parameterized
computational model of the designed entity, which allows computers to predict how
this entity would perform considering aesthetics, functionality, e�ciency and many
other criteria.

This thesis mainly focuses on the design of exible structures, i.e., �nding the
parameters of a mechanical model such that the resulting fabricated object behaves
and/or looks in a desired manner. However, computer graphics has explored many
other related design problems which have heavily inuenced our own work. To give
the reader an overall view of the diversity in the literature, we will categorize these
works according to several criteria:

� The nature of the underlying mathematical formulation . Our own
work together with many others [7, 14, 8, 16, 22, 24, 23, 94, 95, 25] relies
on classical elasticity theory to predict the behavior of the fabricated objects.
However, over the years, many works have also addressed kinematic [96, 97,
98, 5, 99], geometric [100, 101, 102, 103, 104, 105, 106] or light-interaction [107,
108, 109, 110, 111] design problems.

� The de�nition of the design goal . Our work belongs to a family that
focuses on functionality and fabricability [14, 88, 97, 16, 22, 24, 23, 94] but
many other works address questions like appearance and aesthetics [108, 112,
113, 50, 114, 111, 32] or manufacturing and material cost-e�ciency [31, 115,
116, 117].

� The solution approach . Some works on computational design consider
mostly forward solutions [14, 118, 30, 29, 119, 50]: the user iteratively modi-
�es the parameters of the model while the computer provides a prediction of
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the resulting performance. More recent solutions have also explored inverse
approaches [120, 1, 10, 2, 12, 22]: the user speci�es the desired result and a
numerical optimization algorithm outputs a valid solution such that the cor-
responding behavior is as close as possible to the goal. Most current works
however propose a combination of the two [97, 8, 16, 5, 23, 25].

� Interactivity and user interaction . Methods can be classi�ed into those
that do require user interaction [14, 8, 16, 97, 16, 5, 25, 23], and those that do
not [88, 1, 10, 2, 12, 22]. It is also important to highlight those methods that
provide output feedback at interactive rates [26, 121, 31, 122, 15, 23, 123, 124].

Recently, Bermano et al. [125] presented a very thorough review of fabrication-
aware design where works are also classi�ed attending to several criteria such as
object representation (e.g., surface, volume), designed attributes (e.g., shape, mate-
rial) and goals (e.g., appearance, deformation, motion). We refer the reader to this
work for further details. In the following pages we will focus on the the extensive lit-
erature on computational design that is most relevant to the work developed in this
thesis. We will start going through some geometric problems focusing on surface
design. Then, we explain several works dealing with animation control, material
characterization and constrained space exploration, and how they are tangentially
related to our problem. Finally, we will focus on fabrication-oriented design, group-
ing the extensive body of work according to how it is related to ours.

2.2.1 Surface design

Our work on KPS presented in chapter 6 targets the design of a class of physical
surfaces whose shapes are governed by a particular set of equilibrium constraints.
Surface design has been in the focus of computer graphics ever since its beginnings.
Numerical problems associated with this works are similar to our formulation, al-
though not all of this problems originate from mechanical simulation and they do
not explicitly consider the fabricability of the designed surface.

For instance, developable surfaceshave attracted a lot of attention from com-
puter graphics [101, 102, 126, 127, 128]. They arise naturally when creating 3D
surfaces from at, inextensible material such as plastic, paper, or sti� fabric and so
are closely related to fabrication-oriented design. As an example, based on the prin-
ciple of auxetic materials, Konakovic et al. [129] were able to create doubly-curved
surfaces by structuring planar sheets of quasi-inextensible material. This problem is
also closely related with surface parameterization, which has many applications in
computer graphics, for instance, for texture mapping. A good survey on the topic
by Floater et al. can be found in [130]. While developable surfaces are character-
ized by having zeroGaussian curvature, requiring vanishing mean curvature leads
to minimal surfaces.
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Minimal surfaces have been intensively studied in mathematics [131, 100] and
also computer graphics [103, 104, 105]. In the context of architecture and engineer-
ing, minimal surfaces appear naturally when designing tensile membrane structures;
see, e.g., [132]. Beyond minimal surfaces and the relatedPlateau problem, there
has been an increasing interest in thegeneralized Plateau problemwhich, instead of
assuming a rigid boundary, considers the case ofEuler elastica [133] andKirchho�
rods [134]. While these works focus primarily on questions of existence and unique-
ness, in our work [23], we investigate the problem of modeling such surfaces for the
purpose of fabrication.

Apart from digital surfaces made for virtual worlds, one important physical appli-
cation domain is architectural geometry [106]. Surfaces from this category are often
subject to constraints relating, e.g., to the planarity of polygonal faces [135, 136]
or to compression-only self-supporting structures [27, 137]. In addition to enforcing
such constraints numerically, exploring the resulting design spaces is a challenging
problem as well [26, 15]. One particular line of recent work [30, 29] has studied
the forward design of membrane structures coupled with bending-active elements.
However, to the best of our knowledge, the inverse problem of automatically de-
termining parameters such that the resulting equilibrium shape approximates given
design goals has not been investigated so far.

2.2.2 Animation control

Most current animation systems rely on physically-based methods for the realistic
depiction of real-world materials such as hair, cloth or uids. Experts working on
video games and the VFX industry are responsible for tuning the corresponding
simulation parameters so that the �nal behavior responds to some artistic intention.
This might result in a very slow trial and error process. As a consequence, the
problem of optimizing external forces, material parameters and rest shapes to achieve
a certain mechanical behavior has also been explored in the context of animation.

As an example of early work, Kondo et al. [138] controlled the deformation of
elastic objects by keyframing rest shapes. Very similar methods have been used for
the same purpose focusing on other mechanical models. For cloth simulation, for in-
stance, Twigg and Kacic-Alesic [139] computed rest lengths for mass-spring systems
in order to achieve desired garment drapes under gravity. Mainly applied to hair
simulation, the same problem has been investigated for a number of di�erent curve
and rod models, including 2D elastic curves [140], articulated rigid body chains [43]
and the super helices rod model [141]. In the context of character animation, Coros
et al. [142] show that it is possible to create autonomous characters modeled as elas-
tic objects by optimizing their rest shapes as a function of high-level motion goals.
More generally, the methods described by Martin et al. [88] and Schumacher et
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al. [143] are also related to the problem of modulating rest shapes in order to e�ect
the behavior of dynamic simulations, but solve the problem by adding a potential
energy term speci�ed relative to a set of input example shapes. One particular
line of work has focused on the interactive editing of deformable simulations using
techniques such as space-time methods or rotation-strain reduced coordinates to ef-
�ciently handle the high computational load [121, 122]. Finally, as an alternative to
rest-shape design, di�erent material optimization solutions have also been proposed
with the same purpose. These works employ a variety of techniques such as model
reduction [144] and optimization of principal stretches [145].

2.2.3 Material characterization

Correctly predicting object deformation requires i) a computational model that is
capable of representing the material behavior, and ii) an accurate estimation of
the parameters of the fabrication material. For the development of this thesis, we
had to estimate material parameters from data. Additionally, the mathematical
formulation associated with this task is equivalent to the one of a design problem.
Basically, we look for object attributes (in this case, material parameters) such that
the predicted deformation matches a target observed behavior.

Some works in computer graphics have addressed the data-driven estimation of
material parameters specially in the context of computational cloth. Early ones [53,
54] were based on �tting parameterized functions of the deformation to measured
data, extracted from comprehensive sets of experiments with their corresponding
machinery {e.g., theKawabata evaluation system[146]. Later, a few works improved
previous results by measuring complex 3D deformations instead of just considering
one-dimensional force-displacement curves. For instance, in the work by Wang et
al. [147], a piecewise linear elastic cloth model is proposed and its parameters are
�tted to experimentally acquired data using a simple setup. On the contrary, Miguel
et al. [148] proposed a more powerful and sophisticated solution where nonlinear
stress-strain curves are numerically optimized considering also the loading forces
over boundary conditions.

In an alternative line of research, some works have proposed more inexpensive
acquisition processes, like extracting parameters from casually captured videos [149,
150, 151]. Their aim was to avoid the need for controlled conditions, but as a
consequence, it was not possible to separate internal (i.e., material-speci�c) from
external (e.g., friction, air drag) parameters. More recent works have precisely
focused on modeling such phenomena and trying to estimate their corresponding
parameters. A pair of examples are the work by Miguel et al. [68] on internal
friction and the one by Xu et al. [152] on damping.
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2.2.4 Exploration of constrained spaces

Many of the previous works feature interactive applications and require the user to
participate {at least{ in part of the design process, e.g. [97, 8, 153, 154, 124, 123].
However, part of this literature that deals with highly constrained problems has
focused more on speci�cally providing methods for the exploration of such spaces.

Many works on constrained geometric modeling are based on using optimization
methods to minimize the distance from a constrained design to a target shape. This
is the case of the work by Bouaziz et al [155], where a shape proximity function and
projection operators are de�ned to perform constraint-preserving changes on arbi-
trary geometric data sets such as curves, polygons or volume elements. Another case
is [26], which explored such constrained manifolds through �rst- and second-order
approximations and applied this method for the design of planar quad meshes. In
addition to allowing manual speci�cation of target shapes, authors often leverage
modal analysis to directly explore feasible solutions parametrically close to a given
design. Freeform architectural design has made good use of early constrained mesh
exploration approaches. For instance, Deng et al. [15] proposed a method where
the numerical optimization is split into a sequence of simple subproblems that can
be solved e�ciently and accurately. Our own work on KPS (chapter 6) is greatly
inspired by all these contributions, as we also propose a two-step optimization pro-
cedure based on a �rst-order approximation to the constraint, and we also feature
modal analysis.

In general, all these methods assume that the user is responsible for the cre-
ation of the design topology and focus on the continuous optimization of low-level
local geometry. However, there are some applications for which high-level structural
features are also essential. Structure-aware shape processing addresses the prob-
lem by dealing with the global inter- and intra-semantic relations among the parts
of a shape rather than on their local geometry. For an extensive review on this
topic, we refer the reader to the work by Mitra et al. [156]. Structural relationships
have been also studied in the context of di�erent design problems. For instance,
Guerrero et al. [119], propose a method to explore the variability of 2D geometric
patterns, using di�erent interpretations of their regularity that correspond to dif-
ferent design variations. The work by Umetani et al. [118] proposes an interactive
solution for the guided exploration of physically valid shapes in furniture design.
While the user focuses on the aesthetics, the framework helps to achieve physical
realizability. This is done by generating multiple suggestions involving both discrete
and continuous changes to restore validity when one or more constraints are vio-
lated. Generation of plausible furniture variations was further explored by Zheng et
al. [157], where symmetric functional arrangements of substructures are identi�ed,
allowing the combination of parts across di�erent model families. More recently,
similar ideas have been applied to the creation of mechanical objects. In the work
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by [158], for instance, the authors present an interactive system that {using 3D
models and high-level functional rules (e.g., A �ts in B){ is able to optimize the
shape geometry to produce a working design. In our works, the topology of the de-
signs is either automatically generated, chapter 5, or delegated to the user, chapter
6. However, the implementation of a variation of some of these methods has been
considered for future work.

2.2.5 Fabrication-oriented design

Designing fabricable objects whose properties can be intuitively speci�ed and con-
trolled is an important research challenge that is quickly gaining interest in the
computer graphics community. As mentioned above, a great variety of performance
criteria have been considered.

In the following, we will focus only on functionality goals in the form of motion
and deformation behavior, as they are closer to our particular work. A variety of
methods that investigate these aspects of design for rigid objects have been proposed.
For example, there are computational design methods for creating objects that can
stand on their own [1], spin stably [2] or sound under contact in a speci�c man-
ner [3]. Thanks to recent works, it is also possible to create articulated 3D-printable
representations of virtual characters [96, 159], design mechanical characters capable
of interesting motions [97, 160, 4, 99] and produce 3D-printable robotic creatures [5]
or telescoping structures [6]. Our work is closer to methods that control the defor-
mation behavior of elastic objects {a problem that has received increased attention
from the research community over the last few years. As also happened with an-
imation control, some of these works dealt speci�cally withmaterial design while
others have focused more on theshapeof the object.

� Material design. Current fabrication methods allow the use of multiple ma-
terials within a single printed object. Many works have taken this technology
as the basis of their approach. For instance, Vidim�ce et al. [161] proposed a
framework for the fabrication of objects composed of multiple materials and
Bickel et al. [7] used a small set of template materials with di�erent deforma-
tion behaviors to fabricate objects whose force-deformation response matches
measurements of real objects. Similarly, Skouras et al. [10] described an op-
timization method for computing an inhomogeneous distribution of material
parameters to control the way in which fabricated elastic objects deform under
the inuence of external forces.

� Shape design. The rest con�guration of elastic objects can also be com-
puted using automated methods. For instance, Skouras et al. [8, 16] showed
that the shape of inatable balloons and more complex structures can be con-
trolled to match input targets by optimizing the rest state of membrane-based
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models. Similarly, the rest state of volumetric objects can be modi�ed to
control the deformation behavior of skin for robotic faces [120], or to specify
the way in which elastic objects deform under gravity [9]. Many design prob-
lems based on single-material fabrication technologies require changing the
shape of the object at a small scale to control deformation properties. Such
is the case of the works developed in this thesis, where the sti�ness of the rod
structure is controlled by modifying rod radii. Microstructures is a related
research line that has attracted increased attention over the last few years,
see, e.g., [12, 162, 163, 13]. These works propose methods for fabricating de-
formable objects with spatially varying elasticity using 3D printing and a single
relatively sti� material. They employ assemblies of small-scale structures with
varied geometries that have an e�ect on global material compliance.

In either case, both material design and shape design problems reduce to identical
mathematical formulations and can be treated in a generic manner. For instance,
Chen et al. [164] presented a uni�ed framework to fabricate objects with controllable
deformation properties and Musialski et al. [165] proposed a series of numerical
improvements that can be applied independently of the optimized features.

In general, the deformed shape of these elastic structures is governed by equi-
librium conditions, thus requiring a balance between internal {elastic{ forces and
external forces such as self-weight and applied loads. The problem of designing
deformable objects that assume desired equilibrium shapes under gravity has been
extensively studied in computer graphics, e.g. for hair [140] and cloth [139] ani-
mation. In the context of fabrication-oriented design, similar problems have been
addressed applied, for instance, to self-supporting surfaces [166] and custom-shaped
elastic solids [9]. Our work shares many aspects of these inverse problems. How-
ever, our KPS design, chapter 6, di�ers in the sense that the driving force is also
membrane stretch, which, unlike external loads, depends on the state of the system.

For completeness, let us briey mention other performance criteria that have
been considered in the literature. Some of these works have focused on appearance
goals. For instance, Shuller et al. [114] proposed a uni�ed framework to create
surfaces that depict certain 3D shapes from prescribed view points. Consideration
for aesthetics has also been seen in works dealing with the design of furniture [123]
or ornamented decorative pieces [50]. Appearance goals are usually also combined
with some high-level functionality. For instance, the work by Dumas et al [113] deals
with the synthesis of structurally sound patterns from sample data, while Martinez et
al. [112] use topology optimization to combine structural and appearance objectives
into the same shape design. A completely di�erent research line focuses on digital
fabrication and deals instead with fabricability and material e�ciency design goals.
Some example works are the cost-e�ective printing of 3D objects with skin-frame
structures by Wang et al. [31], or the more recent design of lightweight structures
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under force location uncertainty by Ulu et al. [117].

The following section �nally reviews a few works dealing with two speci�c rep-
resentations of fabricable objects which are specially related to the work developed
in this thesis: physical surfaces and rod structures.

Physical Surface Design

Most works in computer graphics related with physical surface design have been re-
stricted to at panels, with applications to plush [167, 154], garment design [14, 168],
rubber balloons [8], inatable structures [16], thermo-formed models [114], surfaces
composed of interlocking elements [153] and tensile structures [30, 29], among oth-
ers. Most of them use a similar approach to the works developed in this thesis, with
slight di�erences depending on the speci�c application.

For instance, rather than automatically generating a rod network for an input
surface as we do in chapter 5, Skouras et al. [16] leave the topology problem to the
user and instead optimize performance such as to enable fast design iterations. Our
approach in chapter 6 follows the same spirit, but instead of optimizing for a �xed
target shape, our method allows the user to explore the space of feasible designs
using a set of editing tools that leverage simulation and optimization. This same
paradigm of computer-assisted but user-guided design is implemented by several
previous approaches, including the work by Umetani et al. [14], who use �rst-order
sensitivity analysis in order to quickly predict the impact of parameter changes
on the equilibrium shape of clothing. As one di�erence, our method extends this
forward design approach with inverse modeling tools that, for user-speci�ed editing
objectives, automatically compute �rst-order optimal directions in parameter space.
Allowing the user to directly edit the 3D equilibrium state was also the driving
motivation for the work of Bartle et al. [168]. However, while their method uses
a heuristics-based, gradient-free approach speci�cally tailored to the problem of
pattern optimization for garment modeling, we capitalize on derivative information
in order to implement fast forward and inverse design tools. Finally, we want to
highlight the contemporary work by Guseinov et al. [94] on tension-actuated at
plates, which shares many similarities on the functionality goal to our own KPS
design. While their solution allows to obtain doubly curved surfaces at the price of
a more complex fabrication method, our results can be easily 3D printed but are
restricted to piece-wise minimal surfaces.

Non planar surfaces mostly arise in architectural geometry, which is a very impor-
tant application domain of computational design, specially in the context of freeform
surface modelling. Although these approaches are not always directly applicable to
real-world scales, most of these works feature fabricated samples to demonstrate
the validity of their solutions. As a consequence, they share similar challenges to
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the ones described in this thesis. Generally, structures are mostly made of rigid
materials and their design consider a combination of performance criteria including
appearance, functionality and fabrication e�ciency. For instance, the creation of
surfaces composed of an assembly of polygonal faces has been extensively studied
for their bene�ts in terms of material transport and storage [135, 136, 15]. Similarly,
many works have dealt with the design of masonry structures, in which case, the
low exural strength of building mortar is countered using compression-only {self-
supporting{ designs [27, 137, 169]. For a more complete survey on this topic, we
refer the reader to the review by Pottmann et al [106].

Rod Structure Design

Our rod meshes share some similarities with truss structures, which have been ad-
dressed in the context of digital fabrication. Wang et al. [31], for instance, proposed
a computational design method that optimizes a truss structure to minimize the
amount of printing material used in the fabrication of rigid objects. Constructions
based on the same principle are known in architectural geometry literature as space
structures and has also received attention from the computer graphics community,
e.g., [28]. Apart from truss structures, more speci�c fabrication-oriented design
problems have been considered over the last few years. For instance, Song et al. [33]
proposed an interactive design tool for creating stable networks of interleaved rods
(known as reciprocal frames), while Gauge et al. [170] addressed the design of phys-
ical characters using tensegrities {networks of rigid rods and elastic springs that are
in static equilibrium.

Objects created by connecting and bending wires are also very common in furni-
ture design, metal sculpting or wire jewelry, and have attracted increased attention
over the last few years. For instance, Liu et al. [32] proposed a method for the
image-based reconstruction of such structures, while Garg et al. [171] developed
techniques for designing wire meshes with prescribed shapes. Wire meshes can be
considered a special case of rod networks, but rather than physics-based optimiza-
tion, their particular structures motivate a geometric approach. The approach by
Miguel et al. [24] targets physical surface representations using bent wires that se-
curely interlock by virtue of deformation. Our approach on KPS design shares the
two-dimensional nature of their design space, but the underlying mechanics are very
di�erent. Instead of designing 3D networks that balance applied loads, our method
computes a 2D layout optimized with respect to membrane forces.

While most of the above methods do not consider automatic topology generation,
Zimmer et al. [172] focus exactly on this discrete problem, albeit in a context that
does not involve equilibrium constraints. Similarly, the work by Zehnder et al. [50]
faced the same problem and presented a computational tool for designing ornamental
curve networks {structurally-sound surfaces with user-controlled aesthetics.
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Mechanical simulation

Our design tools build on physics-based animation in order to predict the deforma-
tion behavior of exible structures in response to applied forces. In this chapter, we
overview the relevant foundations of mechanical simulation and describe in detail
the mechanical models and numerical solvers that we have developed in this the-
sis. Our main contribution here is the creation of a novel mechanical model for the
simulation of exible rod meshes in 3.2.2.

� The �rst section 3.1 briey reviews the foundations of mechanical simulation,
formalize the mathematical problem and establish a common framework for
the de�nition of mechanical models.

� The second section 3.2 explains in detail the model that we have devised for
the simulation of rod meshes, preceded by a description of the discrete elastic
rods model upon which it is based.

� The third section 3.3 describes the discrete shells model that we use for the
simulation of the tensile fabric, with special emphasis on the orthotropic con-
stitutive model employed for the elastic membrane.

� The fourth section 3.4 concludes by explaining in detail the numerical meth-
ods that have been used for the computation of static equilibria and analyze
potential problems of their practical implementation.

3.1 Foundations

Let us assume there exists a continuum mechanical modelM (O) that determines
the elastic behavior of a deformable objectO � R 3 through a conservative energy

27
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potential V(O) 2 R . Simulating the statics of this mechanical system implies solving
the nonlinear system of di�erential equations de�ned by net force equilibrium:f = 0
for any applied external forces and boundary conditions. Finding a computational
solution to these equations using simulation requires de�ning discrete expressions
for both the kinematics of the object and the potential energy function.

Discrete kinematics We consider a generic Lagrangian discretization in the form
of a vector q = f q1; : : : ; qng in some known generalized coordinates system. This
vector containsn independent variables that spatially approximate the state of the
object in di�erent con�gurations:

� We denote thedeformedcon�guration of the object asq and refer to the space
of all possible deformed con�gurationsq 2 R n asdeformedor world space,Q.

� We denote theundeformedor rest con�guration as �q and refer to the space of
all undeformed con�gurations �q 2 R n as undeformedor material space,U

Discrete energy Given a spatial discretization, an approximation of the potential
energy must then be formulated, discretely parameterized by the deformed con�g-
uration q, V(q) : R n ! R . Note that we are omitting here other magnitudes that
might be also a�ecting the value of the energy potential (e.g. gravity constant, un-
deformed con�guration material properties, etc.) but whose values do not change
during the simulation. The discrete energy formulation allows deriving the expres-
sion of the systemforces as the negative gradient of the potential energyV w.r.t
the deformed con�guration q, f (q) 2 R n :

f (q) = �r qV T = �
�

@V
@q1

; : : : ;
@V
@qn

� T

: (3.1)

Similarly, system forcesJacobian can be calculated as the matrix of negative
second partial derivatives of the potential energyV w.r.t the deformed con�guration
q, J(q) 2 R n� n :

J(q) = �r 2
qV = �

2

6
6
4

@2V
@q11

� � � @2V
@q1n

...
. . .

...
@2V
@qn 1

� � � @2V
@qnn

3

7
7
5 : (3.2)

Note that, in our convention, we consider the partial derivatives of a scalar function
to be a row-vector. With a close expression for both the force and the Jacobian of
the mechanical model, the expression of the force can be linearly approximated at
any point q0 using Taylor's expansion:
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f (q) ' f (q0) + J (q � q0) (3.3)

Mechanical model With these ingredients, standard numerical methods can be
used to solve the nonlinear systems of equations resulting from the static equilib-
rium. In the following sections, we will describe the di�erent mechanical models we
have used in this thesis in terms of these two components. First, we will overview
the continuum mechanics formulation associated with the model. Then, a spatial
discretization approach will be introduced followed by a reformulation of the smooth
energies into discrete expressions.

3.2 Rod mesh model

Rods are curve-like elastic bodies that have one dimension ("length") much larger
than the others ("section"). As mentioned in chapter 2, among the many existing
computational approaches for the simulation of rods, we choose thediscrete elastic
rod (DER) model by Bergou et al. [45, 46], due to its compact curve-angle represen-
tation with explicit centerline. We note, however, that other approaches based on
reduced coordinates, e.g., [42], or full coordinates with constraints, e.g., [20], would
be possible as well.

In the following section 3.2.1, we briey summarize the most relevant part of
the theory regarding Kirchho� rods and discrete elastic rods. Since the model by
Bergou et al. does not account for coupling among rods, in section 3.2.2, we propose
a model for rod connections, formulate elastic energy terms, and describe how to
correctly transmit bending and twist forces across connections.

3.2.1 Discrete rod model

In this section, we briey review classic Kirchho� rods theory as well as the reduced
coordinate formulation of discrete Kirchho� rods developed by Bergou et al. [21, 46].
We refer to the original works for a more thorough explanation.

Smooth Kirchho� rods

Classic Kirchho� rods are conveniently modeled as adapted framed curves with an
arc-length parameterized centerlinec(s) 2 R 3 and an orthonormal material frame
m(s) = [ t (s) b(s) n(s)] 2 SO(3), where t is the tangent, b, is the binormal and
n is the normal. We assume thats is an arc-length material parameterization of
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the undeformed con�guration of the adapted framed curve. Recall that we will
denote quantities associated to the undeformed con�guration of the material with
an overline, e.g. �c. The orthonormal material frame assigned to each point of the
centerline spans the plane normal to the centerline's tangent called the cross-section,
and contains the requisite information for measuring twist. Since the material frame
is adapted to the centerline, the following condition must hold:t (s) = c0=jc0j, where
the prime indicates di�erentiation with respect to the s coordinate.

The Kirchho� theory of elastic rods de�nes scalar functions that measure the
strain of any adapted framed curve {given by the change of the orthonormal frame
expressed in its own coordinates and the deformation gradient w.r.t. a naturally
unitary straight rod:

� = kc0k; ! b = � � b; ! n = � � n; m = b0 � n; (3.4)

where � = t 0 is the centerline's normal curvature vector. Here, the �rst term,� ,
corresponds to the relative axial strain. The second and third terms,! b and ! n ,
represent the rod's curvature vector expressed in material coordinates and measure
the bending of the material frame. And the last term,m, refers to the twist of the
material frame around the tangent. Accordingly, the total elastic energy contains
stretching, bending and twisting contributions,V = Vs + Vb + Vt .

� The stretch energy is de�ned as

Vs =
1
2

Z
ks(� � �� )2ds; (3.5)

whereks is the stretch sti�ness.

� The bending energy term is de�ned as

Vb =
1
2

Z
(! � �! )T B (! � �! )ds; (3.6)

where! = ( ! b; ! n ) represents the centerline curvature vector andB is a sym-
metric positive de�nite 2 � 2 matrix representing the bending sti�ness. This
formulation allows for an anisotropic bending response in the two main direc-
tions of the cross-section.

� Finally the twist energy term is de�ned as

Vt =
1
2

Z
� (m � �m)2ds; (3.7)

where� is the twist sti�ness.
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Note that this model generalizes to naturally non-unitary, curved or twisted rods
by subtracting away the undeformed centerline axial strain �� , curvatures �! and twist
�m. The particular case of an isotropic, naturally straight rod is obtained by taking
B = kb I 2� 2, �! = 0 and �m = 0.

Curve-angle formulation

The main contribution of Bergou et al. [21, 173] is the development of a reduced
coordinate formulation of thin Kirchho� rods, which is based on a previous analysis
introduced by Langer and Singer [174]. In the curve-angle representation, the ma-
terial frame is expressed through a rotation roll� (s) from an adapted orthonormal
reference framem(s) = [ t (s) b(s) n(s)] 2 SO(3) which will be further explained
below. More precisely, material frame can be explicitly computed asm = R(t ; � ) m,
where R is the rotation around the vector t by an angle � . When applied to an
orthonormal frame, this operation reduces to:

b = cos� � b + sin � � n; (3.8)

n = � sin� � n + cos� � b;

with t = t . Like other reduced coordinate models, this avoids the need for sti�
constraints that couple the material frame to the centerline, while at the same time,
the explicit centerline representation facilitates collision handling and rendering.

Discrete rod kinematics

In the discrete setting, the kinematic state of the rod results as follows: the centerline
of the rod is represented by the centerline as a piece-wise linear curve de�ned by a set
of n nodesc = f ci g and material frames are represented by a set of roll anglesf � i g
w.r.t. the reference frames that pertain to the edges of the centerlineei = ( ci +1 � ci )
(Fig. 3.1).

Whenever there is a change in the kinematic state of the rod, the reference frame
m should be updated so that the material framem remains adapted. In discrete
elastic rods, this operation is performed by parallel transport of a frame initialized
to the material frame in the rest state. Parallel transport is an important concept
in the discrete elastic rods model, which serves to transform a frame adapted to a
source edge into a destination edge. Given two unit vectorsv1 and v2, the parallel
transport is de�ned as the minimum rotation that aligns v1 with v2:

P(v1; v2) = R(v1 � v2=kv1 � v2k; \ (v1; v2)) ; (3.9)

whereR(v;  ) is the rotation about the unit vector v by an angle , and \ (v1; v2)
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Figure 3.1: Discretization of the centerline as a piece-wise linear curve de�ned by a set of
nodesci and edgesei . In the curve-angle representation, the material framem i (red) is
de�ned as a rotation about the tangent of a reference framem i (blue) by a roll angle � i .

is the angle between the vectorsv1 and v2. Depending on whether reference frames
are parallel transported inspaceor in time, the resulting formulation o�ers di�erent
computational advantages:

� Parallel transport in space Initially, Bergou et al. [21], suggested using the
geometrically most natural (and physically most relaxed) frame adapted to
a curve: the Bishop frame. For a given centerline, this is an adapted frame
with zero twist uniformly, and its evolution along the centerline corresponds
in�nitesimally to a rotation about the curvature binormal. In the discrete
setting, this implies parallel transporting frames between adjacent edgesm k =
P(et

k� 1; et
k) m k� 1. During the simulation, the reference frame is subsequently

updated starting from the frame at the beginning of the rodm0. The state
of the k-th material frame of the rod is dependent on the kinematics of the
(k� 1) previous centerline edges. Consequently, the force stencil is not local and
the resulting Jacobian is dense. Although this limits the applicability of this
method, authors claim that, under speci�c conditions {i.e. isotropic bending
response, straight undeformed con�guration, quasistatic material frame and
explicit integration{ there is no computationally more e�cient solution.

� Parallel transport in time Posteriorly, Bergou et al. [46], suggested that the
reference frame would also evolve naturally in time, rotating by the minimum
amount needed to keep itself adapted; this corresponds to a frame having
zero tangential angular velocity. In the context of static equilibrium solving,
\time" will refer to the subsequent iterations of the quasistatic solver. In the
discrete setting, this is equivalent to parallel transporting the reference frame
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between two time-instances of the same edgem t+1
k = P(et

k ; et+1
k ) m t

k . During a
simulation, this evolution can be done incrementally {only the reference frame
at the current time step must be known to advance it to the next time step.
The resulting force stencil is local and the Jacobian is sparse, enabling the use
of implicit integration. Given the particular needs of our problem, we adopt
the second approach.

With this reduced-coordinates formulation, the twist of the rod depends only ex-
plicitly on the set of twist angle coordinates. However, parallel transport establishes
an implicit link between the kinematic state of the centerline and the twist angle,
which must be considered during force and Jacobian derivation.

Discrete elastic energies

With the discretization, the elastic energies introduced before result:

1. Stretch . For an edge between nodesc1 and c2, with rest-length l0, and stretch
sti�ness k, the stretch energy depends only on centerline variables and can be
computed as follows:

Vs =
1
2

ks l0

�
1 �

kc2 � c1k
l0

� 2

: (3.10)

2. Bending . Recall that the elastic bending energy in the smooth case was
dependent on the curvature of the centerline. Since each edge is straight, it
follows that discrete curvature is associated with vertices. For two adjacent
edges with material framesm1 = [ t 1; b1; n1] and m2 = [ t 2; b2; n2], the discrete
curvature binormal at the shared vertex is a vector orthogonal to the osculating
plane passing through the edges and can be computed as:

(� b) =
2t 1 � t 2

1 + t T
1 t 2

: (3.11)

It can be shown that the magnitude of this vector is 2 tan(� i =2), with � i the
turning angle between two consecutive edges. Note that this quantity is well-
de�ned in the case of collinear edges even though the binormal is not. Given
this, the discrete material curvature at the shared vertex is de�ned as

� =
�

(� b)T n1 + n2

2
; � (� b)T b1 + b2

2

� T

: (3.12)

With a rest-state curvature � 0 and anisotropic bending sti�nessB (see material
parameterization below), the resulting discrete bending energy between the
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edges is

Vb =
1

2l0
(� � � 0)T B(� � � 0): (3.13)

It should be noted that � is de�ned per vertex as a function of the incident
edges and their material frames. Hence,� depends on both, centerline posi-
tions and twist angles.

3. Twist . For the same two adjacent edges mentioned above, twist can be com-
puted as the di�erence in the material-reference roll angle between the two
frames, i.e.,� 2 � � 1, plus a reference twist introduced when parallel trans-
porting the reference frame over time. For two subsequent steps in timek � 1
and k and two adjacent reference framesm1, m2, this computation results in:

 = \
�
P(t k

1; t k
2) P(t k� 1

1 ; t k
1) bk� 1

1 ; bk
2;

�
: (3.14)

With a twist sti�ness � , the �nal twist energy between the edges results in

Vt =
1

2l0
� (� 2 � � 1 +  )2: (3.15)

Note that twist forces acting on the centerline are non-zero, due to the inuence
of the centerline on the reference twist . Similarly, bending forces acting on roll
angles are non-zero, due to the inuence of these angles on the orientation of material
normals and binormals.

Material parameterization

The elliptical cross-section of the rod is discretized at edges with normal and binor-
mal radii rn and rb. The area of the resulting cross-section isA = � r n rb. Knowing
the Young modulusE and shear modulusG of the material, the stretch, bending,
and twist sti�ness can be computed, respectively, as [46]:

ks = E A; B =
E A

4

�
r 2

n 0
0 r 2

b

�
; � =

G A(r 2
n + r 2

b)
4

: (3.16)

The mass of the edges is lumped at nodesf ci g. For a material with mass
density � , the lumped mass on a node with incident edge volumesV1 and V2 is
m = � (V1 + V2)=2. Additionally, the model also considers the cross-sectional inertia
of each twist anglef � i g, which is I = �V r n rb=2. Alternatively, f � i g variables might
be assigned with zero inertia to ensure the material frames stay always in quasistatic
equilibrium.



Chapter 3. Mechanical simulation 35

Simulation scheme

Independently of the nature of the simulation problem {whether we are solving
dynamic deformation or static equilibrium{, generally each solver iteration provides
a new guess forf ci g and f � i g. Once the new centerline is computed, we recompute
the reference frame on every edge through parallel transport over time, and apply
the roll angles to compute the new material frames. As noted before, the reference
frame accumulates twist that must be updated after each iteration. For more details
on the dynamic simulation algorithm, we refer the readers to the original work [173].

3.2.2 Rod network model

We propose an extension to discrete elastic rods model [21, 173] to handle con-
nections between multiple rods. With the goal of avoiding the use of constraints,
we devise an elastic energy that captures each rod deformation w.r.t. a rigid-body
representation of the connection. Depending on how we keep track of connection
kinematics, this framework leads to two alternative formulations:

� A co-rotational approach , that we de�ned in [22], where the orientation
of each connection is estimated kinematically from incident rods. We formu-
late their implicit relation and show how the elastic coupling energy must be
derived to correctly transfer bending and twist forces between connected rods.

� An explicit approach , later used in [50, 23], where each connection keeps
track of its own orientation with 3 additional DoFs in the form of Euler angles.

In the following sections, we will �rst describe the co-rotational model, which bene�ts
from a reduced number of DoF. Then, we will briey explain the changes that are
necessary to implement the explicit approach.

Coupling energy

For each rod incident in a given connection, we seek to de�ne an energy that cap-
tures its deformation relative to all other incident rods. We follow a co-rotational
approach, measuring deformation potentials w.r.t. rigidly transformed connections.
Speci�cally, for each rod incident in a connection, we condense the e�ect of the
remaining rods into a singleconnection edgewhose orientation is determined kine-
matically using best-�t rigid transformations. Another possibility would be to de�ne
pairwise energies for the segments incident in a connection, as done in theCosserat
nets framework [47], but we found it more di�cult to weight pair energy contribu-
tions to ensure a correct integration volume.
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Let us consider a set of rod edges incident in a connection, with rest-shape
material frames f �m i g. In the deformed setting, we estimate a rotationR of the
rest-shape connection that best matches the deformed connection. Then, for each
incident edge, we de�ne a connection edge with material and reference framem c;i =
R �m i , i.e., the rigidly rotated rest-shape material frame (Fig. 3.2). Note that, as
material frames are already determined by the rotation of the connection, there is
not need for a curve-angle discretization {i.e. reference and material frames are
equal and hence roll angles at connection edges are trivially� c;i = 0. However,
the reference frame twist c;i between each incident rod edge and its corresponding
connection edge must be considered as for individual rods.

Figure 3.2: At any moment, the rigid state of the connection is determined by a rotation
matrix R which is computed using shape matching. For each incident edge reference frame
m i (blue) and corresponding material framem i (red), the rotation de�nes a connection
edge with material frame m c;i = R �m i (green).

Given material and reference frames of incident edges and their connection edges,
we can compute bending and twist elastic energies at the connections based on the
deviations between incident edges and their corresponding connection edges. For
doing so, we use the very same formula in Eqs. (3.13)-(3.15) with a slight di�erence:
for each incident edge we use as integration domain half the rest length of the edge.
Consequently the total potential elastic energy of the connection results:

Vc =
1
2

kX

i =0

Vb(m i ; R �m i ) + Vt (m i ; R �m i ); (3.17)

wherek is the number of incident rods in the connection. Note that the total domain
of integration considered is half the sum of rest lengths of all edges incident in the
connection. The deformation of each incident rod in the connection is a�ected by its
own material properties and the anisotropic edge radii. This allows geometrically
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complex connections with heterogeneously thick incident rods to deform realistically
according to the material, even for coarse discretizations (see Fig. 3.3 and Fig. 3.4).

Rotation estimation

In practice, we estimate the rotationR of a connection by minimizing the defor-
mation of material frames of all incident edges. To consider the e�ect of both the
bending and twist deformation of incident rods on the connection rotation, we mea-
sure the deviation of the material tangentt and one of its orthonormal material axes
n. Similarly to the shape matching approach by Mueller et al. [175], we �rst estimate
the linear transformation that minimizes the least-squares deformation energy:

A = arg min
kX

i =0

Tr( B i )kt i � A �t i k2 + � i kn i � A �n i k2; (3.18)

and then extract the rotation through polar decompositionA = R S. Weighting
the deformations of tangents and their orthonormal axes with each edge's bending
and twist sti�ness respectively, we favor the alignment of thicker and sti�er edges.
Note that, for simplicity, both bending directions are considered together for the
alignment of the tangent, and hence weights are not a�ected by the anisotropy
of the rod and are just proportional to its thickness, Young modulus and shear
modulus. A more precise alternative might have been considered by taking into
account also the binormal of the incident edge albeit at the expense of a much more
complex derivation of coupling forces.

Figure 3.3: This example depicts force transfer at rod connections with our connection
model. The axis of a windmill is twisted, and upon release its twist transfers into bending
of the blades. A thinner axis (left) produces less momentum than a thicker one (right), as
one would expect. The centerline of the axis was kept �xed.
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Coupling Forces

To compute the bending and twist forces at connections, the respective energy terms
need to be di�erentiated w.r.t. the DoFs of all incident rod edges. The di�culty
stems from the fact that the material frames are not explicit DoFs, they are kine-
matically de�ned by the best-�t rigid transformation as explained above.

As material frames depend through the rotation of the connection on all DoFs of
incident edges, the bending and twist energies of an edge pair formed by an incident
edge and its connection edge need to be di�erentiated w.r.t. centerline coordinates
and roll angles of all the incident edges of a connection, producing non-zero bending
and twist forces between all pairs of incident edges. This is actually the expected
behavior, because bending of one incident edge may produce twist on other incident
edges and viceversa. Fig. 3.3 shows how our model succeeds to represent the coupling
between rods incident in a connection.

Even though the number of force terms and required derivative calculations grows
w.r.t. the regular discrete elastic rods method, these derivatives are mostly built
from the same basic blocks. The only exception is the need to compute partial
derivatives of rotated rest-shape material frames,m c = R �m, w.r.t. centerline
coordinates and roll angles of all incident edges in the connection, as discussed
in the paragraph above. By the chain rule, the di�erentials of rotated rest-shape
material frames can be generally computed as:

d(R �m) =
@R
@A

kX

i =0

�
@A
@t i

dt i +
@A
@n i

dn i

�
�m i : (3.19)

@R
@A is the derivative of polar decomposition which can be found in the work by
Barbic and Zhao [78], and@A

@t i
and @A

@n i
are constant and easily computed from the

linear expression that de�nesA [175]. Derivatives dt i and dn i w.r.t. incident edges
centerline and roll angles can be easily derived from the discrete rod kinematics
formulation introduced in the previous section 3.2.1.

Finally, static equilibrium solving requires the computation of energy Hessians,
i.e., force Jacobians. Other than derivatives already present in the original discrete
elastic rod formulation, our rod networks require the computation of the second
derivatives of polar decomposition. Barbic and Zhao [78] also derived the scalar sec-
ond derivative of polar decomposition, but we require a matrix of second derivatives
with mixed terms and follow a very similar derivation.

We denote with sk(! ) the 3 � 3 skew-symmetric matrix of a vector! 2 R 3,
i.e., sk(! ) x = ! � x; 8x 2 R 3. Similarly, we denote with sk� 1(A ) the unique
skew-vector! 2 R 3, such that sk(! ) = 1

2(A � A T ).

Given a polar decompositionA = R S, its �rst derivative is:
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@R
@u

= sk( ! (u)) R;
@S
@u

= R T

�
@A
@u

�
@R
@u

S
�

; (3.20)

with ! (u) = 2 G � 1 sk� 1

�
R T @A

@u

�
;

and G = (Tr( S)I � S)R T :

The mixed second derivative of the rotation matrix is:

@2R
@u@v

= sk
�

@! (u)
@v

�
R + sk( ! (u)) sk(! (v)) R; (3.21)

with
@! (u)

@v
= 2 G � 1 sk� 1

�
R T

�
@2A
@u@v

� sk(! (v))
@A
@u

��

� G � 1

�
Tr

�
@S
@v

�
I �

@S
@v

�
R T ! (u) + sk( ! (v)) ! (u):

Fig. 3.4 shows the application of our connection model to the dynamic simulation
of a sphere-shaped rod mesh. The sphere moves down straight during compression,
but then it twists up due to the mesh topology and the highly anisotropic bending
behavior which favors tangent plane deformations.

Figure 3.4: Dynamics of a sphere with complex interplay of compression and twist. The
mesh topology and the highly anisotropic bending behavior favor tangent plane over out-
of-plane deformations.
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Explicit formulation

A formulation extending our model was proposed by Zehnder et al [50]. In this
approach, instead of implicitly inferring connection states using best-�t transforma-
tions to incident rods, they explicitly modeled connections as mass-less rigid bodies
with rotational DoFs. More precisely, the material frame at connection edges is
computed as follows:

m = R e(e1; e2; e3) R c �m: (3.22)

Here, e = ( e1; e2; e3) are Euler angles which are used as rotational DoFs andR e

is the corresponding transformation. To avoid gimbal lock, after each step, the
rotation from the Euler angles is transferred into a cumulative rotationR c which
is treated as a constant value. The total orientation is then the composition of the
Euler angles and the cumulative rotation.

Despite the need of additional DoFs, derivatives of rigid-body rotations are com-
putationally less expensive than calculating the expressions in Eqs. (3.19)-(3.21),
and also more robust to extremely deformed con�gurations. In general, this leads to
better conditioned optimization problems. We adopt this alternative formulation in
our own work in chapter 6, because the designed rod meshes are sparsely connected,
and so the computational overload due to the additional DoFs is negligible.

3.3 Thin-shell model

Thin shells are thin exible structures with a high ratio of width to thickness (e.g.
> 100). Thin-shell models are usually governed bymembrane (stretch) and ex-
ural (bending) energies formulated based on nonlinear continuum mechanics and
discretized using FEM. In the following sections, we will explain in detail the two
mechanical formulations that we have used to model the membrane and exural
components of the energy:

� Stretch (section 3.3.1). We use aconstant-strain triangle FEM discretization
with a St. Venant-Kirchho� (StVK) constitutive model. Although the ma-
terial that we employ for fabrication is almost isotropic, our implementation
considers also orthotropic e�ects [64] in order to accommodate other types of
fabrics, if desired.

� Bending (section 3.3.2). We adopt thediscrete shellsmodel by Grinspun et
al [63]. In our setting of cloth simulation, internal forces are strongly domi-
nated by membrane stress and exural stress is almost negligible. However, to
avoid numerical problems when the fabric sags, we add weak bending forces.
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3.3.1 Orthotropic membrane

A material is considered orthotropic if there exist three planes {orthogonal to each
other{ by reections with respect to which material properties remain invariant [176].
The axes normal to these planes are called principal material directions. This is the
case for many fabric materials, as principal axes are usually in correspondence with
warp and weft directions in woven fabrics, and with course and wale directions in
knitted fabrics.

Smooth formulation

Elastic surfaces resist stretching (local change in area) and shearing (local change in
length but not area). In the classical thin plates and shells theory, see e.g. [177], the
orthotropic material behavior is described by the generalized Hooke's law assuming
a linear relationship between the strain and the stress tensor.

We consider an elastic surface a 2-manifold embedded in the 3D space with
planar undeformed con�guration. Extending the notation introduced in section 3.1,
the deformation of an object in the continuum is often characterized by a time
dependent deformation map� : R 2 ! R 3, from the material con�guration �x 2 R 2

to the deformed con�guration x 2 R 2.

Continuum elasticity is generally built upon thedeformation gradientF = r �x � ,
i.e. the derivative of the deformation map w.r.t. material coordinates. In the
case of the considered elastic surface, this is a 3� 2 tensor. Based on the defor-
mation gradient, rotation invariant measures are generally calculated to quantify
the deformation, since pure rotation should not induce any stress in a deformable
body. The most popular choice is the Green deformation tensor, which is de�ned as
� 2� 2 = ( FT F � I ). The material constitutive model then de�nes the relation between
such strain and the Cauchy stress� 2� 2, which provides the elastic forces per length
in a unit material direction n as fn = � n. The St. Venant-Kirchho� model states
that the strain and the stress are linearly related through a fourth order compliance
tensor C like � = C� . This relation can be written in matrix form referred to the
principal material axes:

2

4
� 11

� 22

� 12

3

5 =

2

4

1
E1

� � 21
E2

0
� � 12

E1

1
E1

0
0 0 1

2G

3

5

2

4
� 11

� 22

� 12

3

5 ; (3.23)

where we have unrolled the 2� 2 symmetric matrices into 3-vectors. Components
11; 22 are called normal components whereas component 12 is referred to as shear
component. As the resulting matrix is block diagonal, it is easily invertible and the
corresponding elasticity tensor (the so-called sti�ness matrix)� = K � is:
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K = 

2

4
E1 E1� 21 0

E2� 12 E2 0
0 0  � 12G

3

5 (3.24)

with  = (1 � � 12� 21)� 1. Unlike isotropic materials, which are parameterized with
a single Young modulusE and a Poisson's ratio� per dimension, orthotropic mem-
branes require two Young modulusE i , two Poisson's ratios� ij and one shear mod-
ulus G. Moreover, under isotropy assumptions, shear modulus can be derived from
Young modulus and Poisson's ratio, but when considering orthotropic materials,
that condition does not hold. As not all parameter settings lead to stable simu-
lations, we suggest following the approach by Li and Barbic [64] to ease material
characterization. In this work, the authors take some assumptions and derive a new
parameterization which is reduced to two Young moduli and a single Poisson's ratio.
More, precisely, the following conditions must hold:

E1 > 0; E2 > 0; � 12� 21 > 1;
� 12

E1
=

� 21

E2
: (3.25)

In general, these conditions derive from enforcing the symmetry and positive-de�niteness
of the sti�ness matrix. Under such conditions, parameters are transformed and the
�nal formulation of the strain-stress relation is:
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� 11

� 22

� 12

3

5 = 

2

4
E1

p
E1E2� 0p

E1E2� E 2 0
0 0  � 12G

3

5

2

4
� 11

� 22

� 12

3

5 ; (3.26)

 =
1

(1 + � )(1 � � )
; G =

p
E1E2

2(1 + � )
;

where the simpli�ed parameters are� 2 (0; 0:5) and E1; E2 > 0. Given this strain-
stress relation, the corresponding membrane stretch energy density is computed as
Vs = 1

2 � : � , where the operator : represents the scalar product between the two
tensors (i.e., the coe�cient sum of the coe�cient-wise product):

Vs =
1
2

2X

i =1

2X

j =1

� ij � ij : (3.27)

Expanding this expression and grouping terms, the elastic potential is:

Vs =
�

1
2

E 1

�
� 2

11 +
�

1
2

E 2

�
� 2

22 +
�

�
p

E1E2

�
� 11� 22 + (2 G) � 2

12:
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When consideringE1 = E2, this equation reduces to the classic St.VK elastic energy.

Discrete formulation

We represent the membrane as a 2-manifold triangle meshM and discretize the con-
tinuum mechanics using a constant-strain triangle FEM. Information of the mem-
brane state is stored on a �nite number of 3D pointsx i 2 R 3, with planar material
con�guration �x i 2 R 2. Finite elements specify a method for reconstructing a con-
tinuous deformation map�̂ : R 2 ! R 3 through interpolation from discrete values
x i = � ( �x i ). Let us consider a generic scheme in which nodal values of a given
variable, e.g., positionx, are expressed throughout the element via polynomial in-
terpolation as:

x(�x ) =
nvX

i =1

x i N i ( �x); (3.28)

where nv is the number of vertices in the element and eachN i ( �x) (called shape
function) is the interpolation weight associated with thei � th node. Note that we
explicitly show the dependence of the shape function on the material coordinate�x
corresponding to the interpolated pointx. In matrix form, this results in x( �x) =
D w N (�x), where all spatial positions of the element vertices have been assembled
into a 3 � nv matrix D w = [ x1; : : : ; xnv ] and, similarly, shape function values have
been assembled in anv � 1 vector N = [ N1; : : : ; Nnv ]T . In this context, a discrete
approximation of the deformation gradient can be computed as:

F =
@x
@�x

= D w
@N (�x)

@�x
= D w B(�x): (3.29)

Here,B is the nv � 2 matrix of partial derivatives of shape functions w.r.t. material
coordinates. Finite elements method highly depends on the particular choice of the
interpolation function. In the case of a triangular mesh, barycentric interpolation
would be the natural election to extend the nodal deformations to the entire interior
of the mesh. For this particular case, the matrixB does not depend on the material
coordinates of the point, and hence the deformation gradient has a closed form and
can be computed as follows:

F = D w G (D mG)� 1; G =

2

4
1 0
0 1

� 1 � 1

3

5 (3.30)

where all material positions of the element vertices have been assembled into a 2� nv
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matrix D m = [ �x1; : : : ; �xnv ]. The value of the matrix G is derived from the material
derivative of shape functions corresponding to isoparametric elements [178]. We
found this formulation to be the most generic and extensible to other interpolation
schemes and discretization elements, but there are other equivalent derivations for
the deformation gradient. For instance, we suggest the reader the course by Sifakis
and Barbic [179] for further information.

With a discrete approximation of the deformation gradient, it is then straightfor-
ward to compute the elastic potential energy in (3.28) and derive the corresponding
force and Jacobian expressions needed for implicit integration.

3.3.2 Discrete shells bending

For completeness, we present here an overview of the thin shells bending model
that we use. Flexure models in shell mechanics are usually based on the di�erence
of the second fundamental forms between the deformed and undeformed con�gura-
tions. This tensorial expression measures deformation and is invariant to rigid-body
transformations of the coordinate frame. Same as with the membrane energy, these
treatment derives expressions over smooth manifolds and then discretizes to carry
out the numerics. But because of their degeneracy in one dimension, the develop-
ment of robust �nite element methods for thin shell-equations is still challenging.

In contrast, the work we adopt, discrete shells by Grinspun et al. [63], directly
de�nes a constitutive model based on discrete geometric operators applied over
piecewise-linear surfaces. The resulting expressions are easy to implement and cap-
ture the deformation behavior of the cloth well enough to prevent wrinkling and
improve the numerical conditioning of the simulation problem.

The discrete shells bending energy is based on the di�erence between the shape
operator {which measures the local curvature at a point on a smooth surface{ eval-
uated on the deformed and undeformed surfaces. Several discrete approximations to
this magnitude can be found, e.g., in [180]. In discrete shells, the authors propose to
discretize the shape operator at edges, measuring the dihedral angle in the deformed
� and undeformed�̂ con�gurations. For a given edgee, the dihedral angle is the an-
gle between the vectors normal to its neighboring faces. Considering this de�nition,
the discrete exural energy is the summation over mesh edges of the expression:

Vb =
jj �ejj
�he

(� e � �� e)2; (3.31)

where�he is a third of the average of the heights of the two triangles incident to the
edge. Implementation-wise, this discrete energy is straightforward to implement,
but depending on the method used for the measurement of the dihedral angle, it
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might be necessary to include safeguards for numerical robustness.

3.4 Static equilibrium

This thesis deals with design problems for which the main performance criterion is
the deformation behavior, more precisely, we consider the equilibrium of fabricated
objects for any given boundary conditions and not how they dynamically behave.
Technically, the static equilibrium is de�ned by the shape with vanishing net forces,
that is f (q) = 0. As introduced in section 3.1,q 2 R n is the deformed con�guration
of the object in some known generalized coordinates system. The resulting forcef 2
R n is generally a nonlinear vector function that may include internal forcesf i (e.g.,
elastic forces) and external forcesfe (e.g., gravity force). In general, forces depend
on the deformed con�gurationq, as well as on some other magnitudes (e.g., material
parameters, gravity constant, etc.) that are kept constant during simulation.

Design methods rely on numerical simulation to predict the actual behavior of
fabricated designs. For some speci�c boundary conditions, we seek to compute the
corresponding deformed con�gurationq in the most accurate and e�cient manner
possible. In the following sections, we will overview a two approaches for the im-
plementation of the static equilibrium solver that might be considered and discuss
their practical applicability.

3.4.1 Root-�nding solver

Using classical Newtonian mechanics, computing the static equilibrium means solv-
ing a system of nonlinear equations or, equivalently, �nding the roots of the vector-
valued function f . The general approach is to use the Newton-Raphson method to
calculate successively better approximations to the function roots. Roughly, given
an initial estimate x0, successive solutions are computed:

xk+1 = xk � J � 1(xk) f (xk); (3.32)

whereJ = r x f (xk) is the Jacobian of the forces w.r.t. generalized coordinates. In
practical terms, that means iteratively solving linear systems of the kindJk � x =
� fk , where � x = ( xk+1 � xk) and functions dependent on generalized positions at
the k � th iteration have been shortened tofk and Jk . In certain situations, the
Newton-Raphson method is an extremely powerful technique and has local quadratic
convergence.
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Practical problems

However, there are practical considerations {related mainly with the properties of
the Jacobian{ that might lead to the failure of the Newton-Raphson method. In the
following, we review the main practical issues that must be considered when solving
static equilibria, specially with the root-�nding algorithms:

� Unstable equilibria . An equilibrium is unstable if a small position perturba-
tion will likely produce a large change in the energy of the system. Mechanical
equilibria happen at the critical points of the potential energy functions gov-
erning the system. These can be either local minima, local maxima or saddle
points. Both maximum and saddle points are representative of unstable equi-
libria. These situations are rather usual, specially in the case of mechanical
models where highly anisotropic behaviors are present, and can easily pro-
ducebuckling e�ects. For example, when a sti� elastic rod is subject to axial
compressive stress, buckling may occur and produce a sudden sideways de-
ection. Although these are valid equilibrium con�gurations, the static solver
should avoid moving towards them. This is justi�ed because not only they are
physically unstable and do not represent a statistically probable state for a
fabricated object, but they are also numerically related with inde�nite points.

� Inde�nite points These correspond to points of the space for which the
Jacobian is inde�nite. Inde�nite matrices are characterized by having both
positive and negative eigenvalues. This limits the range of linear solvers that
can be used to solve the linear system in (3.32), as most used direct and it-
erative methods require a positive semi-de�nite matrix to properly function,
e.g., Cholesky and Conjugate Gradient. In addition, an inde�nite point indi-
cates the presence of a saddle point in the potential energy function, and so
an unstable equilibrium.

� Stationary points . These are points of the generalized space at which the
Jacobian is singular, and consequently the linear system in (3.32) cannot be
solved, causing the algorithm to halt. Analytically, this implies that the null-
space of the Jacobian matrix is non-empty, i.e., there exist directions in the
space for which the value of the force function does not change. Therefore, the
problem has in�nite solutions. In mechanical simulation, this usually means
that numerical constraints in the form additional boundary conditions must
be imposed to avoid the singularity. For instance, as we have explained in
the previous section 3.3.1, most elastic energy formulations are invariant to
rigid-body transformations and hence translation or rotation steps must be
prevented.

� Ill-conditioning . Even if the Jacobian matrix is strictly non-singular and
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positive de�nite, mechanical models can usually lead to ill-conditioned prob-
lems. If the Jacobian is nearly singular or has a large condition number {ratio
between the maximum and mimimum eigenvalue{ at some iteration, the linear
system is not numerically well behaved for the computation of a solution. This
might lead to bad estimates that may overshoot the step and diverge from the
closest root. A recent work by Kannan et al. [181] has analyzed potential
causes and solutions for ill-conditioned problems in structural mechanics.

Practical solutions

Here we identify two solutions that may overcome the problems mentioned above:

� Regularization The challenges due to inde�nite problems are usually ad-
dressed through linear system regularization. The simplest solution is solving
the linear system (J + � I )� q = � f with increasingly higher values for� , until
the resulting matrix is strictly positive de�nite. Nevertheless, there are other
regularization schemes that may also help with ill-conditioning. For instance,
the well-known Thikonov regularization formulates an ordinary least squares
problem to solve the linear system and adds a regularization term in order to
give preference to particular solutions with desirable properties. This leads to
a generic linear system formulation (JT J + QT Q)� q = � JT f , for some matrix
Q. Depending on the choice ofQ, Thikonov regularization may improve the
conditioning of the problem, thus enabling a direct numerical solution. For a
more thorough study on regularization, we refer the reader to [182].

� Step selection Even with the previous safeguard, overshoot and divergence
from the roots might still happen due to the nonlinearity of the force function
and poor initial estimates. To mitigate this problem, a step length selection
procedure should be also used. A straightforward solution could be to con-
sider a simple backtracking line-search in the �q direction that ensures the
reduction of a merit function � . Most literature on nonlinear equation system
solving suggests using the norm of the function,� = kf k. More sophisti-
cated line-search methods consider additional convergence conditions such as
the Armijo rule (i.e., su�cient decrease in the merit function) and theWolfe
condition (i.e., su�cient decrease in the curvature) [183]. However, indepen-
dently on the particular line-search scheme used, Newton-Raphson algorithm
together with this merit function is equally attracted to local minima and
saddle points, what negatively a�ects the overall convergence towards good
solutions. In the next section, we will introduce a very similar formulation
that originates from Lagrangian mechanics and improves the robustness of the
solver.
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3.4.2 Optimization solver

As we have seen, the set of solutions to the static equilibrium problem correspond to
the critical points of the potential energy functionV. Therefore, we can reformulate
the problem as the minimization

min
q

V(q); (3.33)

which �nds solution at the points where the gradient vanishesr qV = � f = 0.
Minimization of the potential energy imposes a bias towards stable equilibrium
con�gurations that avoid the problematic saddle points mentioned in the previous
section. Formulating the problem as a nonlinear optimization o�ers the possibility
of using a much broader range of numerical methods. In practical terms, we solve
the problem in (3.33) usingsequential quadratic programming(SQP), for which the
step computation is formally equivalent to the root-�nding Newton-Raphson method
described above, {we refer to Nocedal and Wright [183] for formal proof. The only
di�erence between the two is in the merit function used for the step length selection
procedure, which in this case is� = V, to guarantee that each step produces a valid
estimate closer to a stable static equilibrium con�guration.
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Inverse elastic shape design

Our tools feature inverse design operators that automatically determine attributes
of the elastic structures such that their deformed shapes meet some user-speci�ed
goals. The associated numerical optimization problem has been repeatedly formu-
lated throughout the extensive literature, having become a standard scenario. In
this chapter, we present a formal characterization of such problem, describe some
numerical solving methods, and analyze the challenges of their practical implemen-
tation. Our goal is to address some common issues across many design problems
that �t within this framework and discuss alternative solution approaches.

� The �rst section 4.1 formalizes the optimization problem to establish a com-
mon notation and characterize this problem based on its theoretical solution
space.

� The second section 4.2 analyzes the practical implications of solving this op-
timization, provides some guidelines on how to formulate design problems to
favor �nding better solutions, and introduce two solution methodologies.

� The third section 4.3 focuses on computational solutions based on the explo-
ration of the constraint manifold, with an emphasis on the usefulness of sensi-
tivity analysis for that purpose, and discuss current issues with commonly-used
standard optimization methods.

4.1 Problem characterization

In this thesis, we study the following generic problem: given a parameterized exible
object, �nd the design {i.e., parameter values{ that optimize some metric dependent
on the static equilibrium deformation of the object, for some boundary conditions.

49
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In this section, we extend the generic notation introduced in the last chapter 3 in
the context of mechanical simulation and formally characterize the problem to serve
as a baseline for further analysis. We then study the theoretical solution space to
better understand the underlying mathematical problem.

4.1.1 Problem formulation

We consider a generic computational modelM (O) that describes the mechanical
behavior of a deformable objectO � R 3 through a conservative energy potential
V(q; p) 2 R . Here, q 2 R n concatenates all the independent variables that dis-
cretize the deformed shape of the object in some known generalized coordinates
system, andp 2 R m is an arbitrary set of parameters that determines the design
of the object for a particular problem. From here onward, we will refer asdeformed
spaceto the spaceQ � R n spanned byq, design spaceto the spaceP � R m spanned
by p, and total spaceto the union of both R � P [ Q � R o spanned byr = ( q; p),
with o = n + m. This parameter set might contain variables modeling discrete ge-
ometry (e.g., the rest-shape) or material properties (e.g., Young modulus), among
others. We are omitting here other quantities that might a�ect the value of the
energy potential (e.g., gravity constant), but whose value is not considered a design
parameter.

Altogether, we then de�ne the generic shape optimization problem as follows:

min
q i ;p

kpX

i =1

h(qi )

s.t. fq;i (qi ; p) = 0 (4.1)

pm � p � pM :

This formulation minimizes an objective functionh dependent on a number ofkp

deformed posesqi , subject to the static equilibrium constraint fq;i = 0 and box
constraints on design parameterspm � p � pM . While the deformed con�gura-
tion qi is generally unbounded, design parametersp are often restricted to valid
ranges. For instance, materials are characterized by Young's modulusE 2 (0; 1 )
and Poisson's ratio� 2 (0; 0:5). For this reason, lowerpm and upper pM limits
are considered. Note that the equilibrium constraint corresponding to each pose
fq;i considers its own boundary conditions. This generic formulation allows, for in-
stance, to de�ne the desired range of deformations of a fabricated object based on
its deformed con�gurations corresponding to multiple scenarios, as it will be demon-
strated in chapter 5. In the following sections, we will further explain both the static
equilibrium constraint and the objective functionh.
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We note that the formulation of inverse elastic design problems might be more
general, containing also other types of constraints. However, for the purpose of our
analysis, it su�ces to consider the problem (4.1) above.

The static equilibrium

We deal with design problems for which the main performance criterion is the defor-
mation behavior. More precisely, we consider the equilibrium of fabricated objects
for any given boundary conditions, i.e., the shape with vanishing net forces. The
de�ned energy potential yields the expression of the system forces as

fq (q; p) = �
@V
@q

2 R n ; (4.2)

fp (q; p) = �
@V
@p

2 R m :

Note that fq are the net forces acting on the DoFs corresponding to the deformed
shape. The analogous magnitude at design parametersfp is not required at this
point, but it will be of use in later sections. The partial derivative of both force
expressions will be also needed and we will refer to them using the following notation:

J(q; p) =

"
Jqq Jqp

Jpq Jpp

#

=

" @fq

@q
@fq

@p
@fp

@q
@fp

@p

#

: (4.3)

The expression of static equilibriumfq (qj ; p) = 0 imposes numerical constraints
on the total spaceR in the form of an underdetermined system ofn {generally
nonlinear{ equations ando variables. The set of all possible con�gurations (q; p)
such that these conditions hold de�nes anm-manifold embedded in the total space
R, which we call equilibrium manifold, E. If the potential energy is conservative
and bounded from below for a speci�c parameter vectorp, there is at least one
equilibrium con�guration that we denote:

q̂ = f q j fq (q; p) = 0 g; (4.4)

located at an extremal point of the potential energy function. Recall from section 3.4
that both maxima and saddle points correspond to unstable static equilibrium states
and are not desirable con�gurations. Additionally, the elastic potential is generally
invariant to rigid-body transformations. Therefore, from this point onward, we
assume thatQ has an empty null-space, i.e., translation and rotation displacements
have been already constrained through boundary conditions. In any case, in section
3.4, we described a numerical solver that can be used to compute such con�gurations
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robustly, navigating only the deformed spaceQ.

The objective function

In this kind of problems, the quality of a given solution is usually measured in terms
of a number ofks shape descriptors� i 2 R si of an arbitrary dimensionality si . We
call the space spanned by the combination of all possible� k vectorsS � S1 [ : : : [ Sk

the shape space.

The simplest setting would be the case where we seek design parameters such
that the deformed shape of the objectq exactly matches a given target con�guration
qt . Then the identity function is the unique shape descriptor �(q) = q, in which
cases = n and the shape space equals the deformed spaceS � Q. However, more
often objectives focus on a subset of the deformation variables, �(q) = T q , with
T s� n being a selection matrix. That is the case of the works that will be described
in chapters 5 and 6, for instance, where we are interested only in the positions of the
centerline nodes of a rod mesh, while the deformed shape is also determined by the
roll angles of the material frame. In general, any combination ofk shape descriptors
could potentially be used in the objective function, including more sophisticated
metrics like area, volume, smoothness, stability or buoyancy, among others. For
each of these shape descriptors, one must provide a corresponding target value� t ,
the distance to which we aim to minimize. This de�nes a generic objective function
as the squared di�erence between shape descriptors and target values

h =
1
2

ksX

j =1

wj k(� j (qi ) � � t
ij )T k2; (4.5)

wherewj are descriptor weights.

Basic problem formulation

For notation simplicity and without loss of generality, further analysis will consider
only one posekp = 1 and one shape descriptorks = 1, which will be the identity
� (q) = q. This way, n = s and the shape space is equivalent to the deformed space
S � Q. With that in mind, we �nally de�ne the shape optimization problem as
follows:

min
q;p

1
2

kq � qtk2

s.t. fq (q; p) = 0 (4.6)

pm � p � pM :
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In the following section we will analyze the theoretical solution space of this
optimization problem and characterize inverse elastic design problems accordingly.

4.1.2 The solution space

In general, equation (4.6) de�nes a nonlinear least squares problem that can be
solved using a standard constrained nonlinear optimization method. In this thesis,
we focus on a solution scheme based on navigating the equilibrium constraint man-
ifold. In this section, we study the solution space of the problem in order to better
understand the geometry of such constraint manifold and how it is related to the
objective function.

Figure 4.1: This �gure represents the three possible situations that might happen depend-
ing on the dimension of designP and shapeS spaces. The set of perfect solutions (red) is
de�ned by the intersection between the target (green) and equilibrium (blue) manifolds.
Note that manifolds do not intersect in the c) case.

The objective function in the problem (4.6) trivially �nds a minimum at q = qt .
This condition de�nes a m-manifold embedded in the total spaceR, where the
objective function vanishes, which we calltarget manifold, T . Note that, as the
objective function does not depend on the design parameters, this target manifold
is constant in theP subspace. The intersection between equilibriumE and target T
manifolds de�nes the set of perfect solutions withh = 0. In general, the maximum
dimension of the intersection between two manifoldsA , B embedded in a spaceR is a
non-negative value formulated as Dim(A\B ) = Dim( A)+Dim( B) � Dim(R), which
in the case of our problem results Dim(E \ T ) = max( m � n; 0). Considering this
fact, inverse design problems can be also characterized in terms of the dimensionality
of the designP and shapeS spaces. Fig. 4.1 shows a geometric representation of
the three situations that might happen:

� Case Dim (P) > Dim (S). There are potentially in�nite perfect solutions.
One instance of this problem appears in some interactive computational tools
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that feature inverse design capabilities, see e.g. [14, 26, 15, 23]. In these cases,
the user sequentially applies geometric changes to the deformed con�guration
q, e.g., pulling from a mesh vertex handler, to de�ne a new targetqt = q+� qt .
The objective function is then formulated to match the incremental change
locally, resulting in a low-dimensional shape space. To select among the in�nite
possible solutions, regularizing terms must be added to the objective function,
e.g., to favor the closest solution to the starting point.

� Case Dim (P) = Dim (S). There is at most a �nite number of perfect so-
lutions and, under some assumptions on the normal and curvature of the
equilibrium manifold, it can be shown that a solution exists. This situation
corresponds, for example, to design problems where the rest con�guration
is optimized such that the deformed con�guration matches a desired shape
p = �q. In absence of external forces, this problem is trivial, i.e.,p = q = qt ,
With external forces, the problem is not trivial and it has been often studied,
e.g., [140, 139, 9].

� Case Dim (P) < Dim (S). There is at most a �nite number of perfect solu-
tions, but the set is generally empty. This is the most common example in the
design literature. In material characterization, for instance, only a few material
parameters are considered as de�ning the design space, but the shape descrip-
tor often considers the whole deformed con�guration, e.g., [148, 68, 184]. In
more general fabrication-oriented design works, the complexity of solving (4.6)
rapidly grows with the size of the design space, and dense parameterizations
are more likely to produce noisy results. Hence, there is a general interest in
using low-dimensional design spaces.

We may assume that, in most cases, there will be no intersection between the
two manifolds. Note that, even whenm >> n , the target con�guration might not
be reachable because we are restricted to the feasible range of design parameters
[pm ; pM ]. Even if the target con�guration is realizable, the equilibrium manifold
E is generally nonlinear and we can only make a guess about the intersection set
based on local linear approximations. In practice, we will look for a point in the
equilibrium manifold that locally minimizes the distance functionh. In section 4.2,
we will explore di�erent alternatives for �nding this solution.

4.2 Solution methodologies

The optimization problem de�ned in (4.6) can be solved using standard optimization
methods for general nonlinear least-squares problems. However, we have seen that
the equilibrium manifold that de�nes the solution space is often nonlinear and full
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of perils. Additionally, the target shape can be arbitrarily far from any static equi-
librium con�guration. In general, this makes the design problem very di�cult and
produces misleading results when computing the numerical approximations needed
to solve the problem.

During the development of this thesis, we have dealt with two main aspects that
largely a�ect the complexity of the design problem and identi�ed simple approaches
that facilitate its solution: i) the selection of the design space, and ii) the de�nition
of the target shape. In the next two sections 4.2.1 and 4.2.2, we will describe each one
of them. Then, we will introduce the two main approaches that we have considered
for solving the optimization problem: constrained optimization, in section 4.2.3, and
constraint manifold exploration, in section 4.2.4.

4.2.1 Design space selection

There are some aspects of the optimization problem that bene�t from an adequate
selection of the design parameters. In general, we aim for formulations that have
two complementary attributes:

1. Naturally smooth solutions . Fabrication-oriented design applications gen-
erally bene�t from producing smooth shapes and designs, not only for aesthetic
reasons. The presence of high frequency noise in the shape or the material dis-
tribution of an object often reduces the accuracy of the discretizations used to
approximate the continuum, produces numerical instabilities in the computa-
tion of the gradient and the Hessian, makes the fabricated object more prone
to malfunction or fracture, and hinder the manufacturing process.

2. Compact parameter sets . In general, the complexity of an inverse elas-
tic design problem rapidly grows with the size of the design space and hence
there is an interest in using compact parameterizations. Although this ac-
tually involves shrinking the solution space and making it more di�cult to
�nd equilibrium con�gurations close to the target shape, it is less prone to
over�tting, which is also associated with non-smooth solutions.

Consequently, we are interested in selecting a compact parameter set such that
the part of the solution space that is not accessible corresponds mainly to non-
smooth and over�tted solutions. One usual way of producing smooth solutions is to
add regularization terms to the objective function, but these terms are usually not
trivial to control and do not make the design space more compact. Instead of using
regularization, we propose de�ning the design space as a numerical interpolation
from a reduced set of parameter control pointsp = z(� ), with � 2 R a and a << m .
The particular nature of the interpolation function z depends on the speci�c design
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problem. For instance, in chapter 5, we employ cubic Hermite interpolation to
de�ne the radii of a rod section along the centerline. Conversely, in chapter 6, we
use Laplacian meshing to determine the rest con�guration of the membrane of a
tensile structure. In any case, it is convenient to choose interpolations where all
nonlinearities can be precomputed and the �nal relationship is linearp = Zm� a� .
Hence, for any magnitudew,

@w
@�

=
@w
@p

Z;
@2w
@�2

= ZT @2w
@p2

Z: (4.7)

This relationship allows us to reformulate the optimization problem, without any
loss of generality, in terms of the parameter interpolation control points� . To ease
the notation though, we will continue using the basic formulation in (4.6).

4.2.2 Target shape de�nition

As we introduced in section 4.1.2, the speci�ed target shape is most likely infeasible,
independently of the parameterization of the problem. In fact, it might be arbitrarily
far from any possible equilibrium con�guration. Under such conditions, numerical
optimization methods usually produce poor results. Introducing prior knowledge
about the design problem in the de�nition of the target shape is generally neces-
sary to obtain good solutions. We propose two approaches for this purpose: using
physically-based targets or equilibrium manifold approximations.

� Physically-based target Often, shape optimization approaches try to match
a target shape that has been de�ned by the user employing some geome-
try deformer. Alternatively, using physically-based deformers for this task
highly increases the chances of producing target shapes that can be success-
fully matched within the considered design space. Even if the underlying
mechanical model of the deformer does not accurately match the model that
determines the equilibrium constraint, similar principles often apply in terms
of volume conservation and deformation ratios. In chapter 5, we show how
thin-shell and FEM computational models can be used to de�ne a target shape
that is successfully matched by a rod mesh model.

� Manifold approximations Direct freeform manipulation of the target is
always possible (e.g., de�ning artistic shapes with an aesthetic intention), but
it will most likely produce targets that are far from feasible. Instead, using
an incremental target exploration ensures that the targets that are de�ned
remain close to feasible. Starting from an initial feasible solution, one can
compute local approximations of the equilibrium manifold and successively
deform the target shape such that the approximate constraints hold. Once
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satis�ed with the deformed shape, this can be used as the target con�guration
of the full nonlinear optimization problem. Although the resulting objective
is probably still not feasible, the chances of the design optimization to �nd
a valid approximation are much higher. In chapter 6, we present a two-step
optimization that is based on this principle.

4.2.3 Constrained optimization solution

Many works in the literature solve the resulting constrained optimization problems
using standard optimization methods, e.g., [8, 10, 31, 28]. Our constrained non-
linear least squares problem can be generally solved using asequential quadratic
programming (SQP) method. This common denomination includes a large variety
of optimization algorithms based on iteratively approximating the nonlinear prob-
lem (4.6) with a simplerquadratic programming(QP) that is easier to solve. Let us
assume for now that there are no box constraints, i.e.,pm = �1 and p = 1 . In
such case, each SQP iteration implies:

1. A quadratic approximation of the objective function

~h(� r ; r 0) = g(r 0)T � r +
1
2

� r T H (r 0) � r ; (4.8)

whereg = r r h and H = r 2
r h.

2. A linear approximation of the equilibrium constraint

~fq (� r ; r 0) = fo(r 0) + Jq (r 0)T � r = 0; (4.9)

whereJq = [ Jqq ; Jqp ] = r r fq .

In each SQP iteration, the solver �nds a guess step �r such that the linear con-
straint is approximately satis�ed and the quadratic objective function is minimized.
Depending on how the formulation handles the interaction between objective func-
tion and the constraints, di�erent submethods can be considered. Next, we will
briey review the three most widely used approaches:Lagrange multipliers, penalty
methodsand augmented Lagrangian. For a more thorough dissertation on the topic,
we refer the reader to the work by Nocedal and Wright [183].

Lagrange multipliers

The method of Lagrange multipliers is a standard strategy in mathematical opti-
mization for �nding the local minima of a function subject to constraints. This
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method is based on considering a set of auxiliary variables� 2 R m called Lagrange
multipliers and �nding the critical points of the Lagrangian function:

L (� r ; � ; r 0) = ~h(� r ; r 0) + � T ~fq (� r ; r 0): (4.10)

The critical points of the Lagrangian occur at saddle points. In the case of an
equality-constrained QP problem, �nding the solution is equivalent to solving a
linear system whose matrix is generally inde�nite of the kind

"
H J T

q

Jq 0

# "
� r

�

#

=
�

� g
� fq

�
(4.11)

where the matrix and the right-hand side are evaluated atr 0.

Penalty method

The penalty method replaces the constrained QP iteration with an unconstrained
QP, adding an additional term to the objective function called penalty function.
This function consists of a penalty parameter� multiplied by a measure of the
violation of constraints, commonly the squared norm. Consequently, each iteration
minimizes the following quadratic function:

~g(� r ; r 0) = ~h(� r ; r 0) +
�
2

k~fq (� r ; r 0)k2; (4.12)

which simply reduces to solving a linear system of the form

(H + � JT
q Jq ) � r = � g � � JT

q fq ; (4.13)

with all magnitudes evaluated atr 0. In each iteration of the SQP, the penalty coef-
�cient is successively incremented to guarantee the enforcement of the constraints.
Ideally, the solution of these series of unconstrained problems would converge to
the solution of the original constrained problem. However, �nding the appropriate
update scheme for the penalty coe�cient is not trivial, and it highly determines the
success of the algorithm. Additionally, taking� ! 1 in late iterations may yield
ill-conditioned system matrices.

Augmented Lagrangian

Similar to the penalty method, the augmented Lagrangian method also replaces the
constrained SQP by a series of unconstrained QPs, by adding a penalty term to the
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objective function. However, to overcome the potential di�culties of the penalty
method, the augmented Lagrangian adds an extra penalty term designed to mimic
Lagrangian multipliers:

~g(� r ; r 0) = ~h(� r ; r 0) +
�
2

k~fq (� r ; r 0)k2 + � T ~fq (� r ; r 0); (4.14)

which, once again, reduces to solving a linear system of the form

(H + � JT
q Jq ) � r = � g � � JT

q fq + � T Jq : (4.15)

Here � is an estimation of the Lagrangian multipliers, which is updated after each
iteration as �  � � � fq (r � ), for a given candidate QP solutionr � = r 0 + � r � .
The resulting estimate improves at every step, progressively reducing the need for
the penalty term. Consequently, it is not necessary to take� ! 1 , and thus
ill-conditioned problems are avoided.

Practical considerations

There are some important aspects for the practical implementation of these methods:

1. Box constraints . Given the formulations presented above, it is easy to add
box constraints on the design parameterspm < p < pM to each quadratic
subproblem. One might simply project the resulting step within the bounds,
but that does not necessarily guarantee that the solution is optimal and hence
compromises the quadratic convergence of the SQP method. The literature
on box-constrained QP problems is extensive and lies out of the scope of this
text, but we suggest using thegradient projection method, see e.g., [183].

2. Linear system solving . Solving the linear systems associated to each of
these formulations is not free of perils. A positive de�nite HessianH is pre-
ferred to guarantee the convergence of the SQP algorithm. The regularization
methods suggested in section 3.4 are also applicable in this context. However,
it is also possible to use approximations to the full Hessian such that positive
de�niteness is satis�ed. We will later describe these approaches in section 4.3.3
in the context of constraint exploration solutions.

3. Step length selection . Independently of the particular method used, each
iteration results in a new guess step �r and hence a candidate solutionr k =
r k� 1 + � � r , which should be closer to a local minimum of the objective. Here,
� represents an adapted step length. This is necessary because the QP is
just an approximation of the more complex nonlinear problem, and its result-
ing step does not always lead to the improvement of the nonlinear objective
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function h. Independently of the particular step-length selection method, e.g.,
line-search, trust-region, etc., it is necessary to de�ne a merit function 	(h; f )
that measures the quality of a given solution. For an unconstrained problem,
there is a straightforward solution, i.e., 	 = h. However, in the constrained
case there is no unique way of formulating this metric. Recall that most de-
sign problems have no perfect solution; therefore, objective minimizationh and
constraint ful�llment fq = 0 are opposing goals. A common choice is to use the
penalty method function, 	 = h +  jj f jj 2, where  is a weighting factor that
adaptively changes depending on the convergence properties of the problem.
 should be small at the beginning of the optimization, and is progressively
increased to ensure that the �nal solution is in static equilibrium.

Box constraints and the regularization of the linear system are standard issues
in the resolution of QP subproblems. Therefore, from this point onward, we will
ignore these issues and refer the reader to this section whenever a box-constrained
QP problem is formulated.

Discussion

A few practical observation about the constrained SQP method:

1. At each iteration, the static equilibrium constraint may not hold for the candi-
date solution. This allows a broad exploration of the total space, which might
facilitate avoiding local minima.

2. Appropriately selecting a valid merit function, as well as adaptively �nding a
compromise between the objective functionh and constraint ful�llment fq = 0
is highly non-trivial.

3. When using Lagrange multipliers, the linear system (4.11) solved at each it-
eration might be relatively costly to solve. The system size ist � t, with
t = 2n + m. Additionally, the matrix A is usually inde�nite; therefore, fast
linear solvers for symmetric positive semi-de�nite matrices cannot be used.

4. When using penalty and augmented Lagrangian methods, tuning the penalty
coe�cient appropriately can be di�cult and, as we have seen, leads to ill-
conditioned system matrices.

5. When considering at the same time severalkp deformed poses with their own
boundary conditions, these methods do not scale well. All the poses share the
same parameter set and the formulation cannot be easily decoupled. Forkp

poses, the size of the problems results 2kpn + m.
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Except for the �rst observation, the rest constitute serious disadvantages on
the applicability of the constrained SQP method in our particular scenario. In the
following section, we introduce how we alternatively approach the problem (4:6),
using sensitivity analysis to iteratively explore the equilibrium constraint looking
for better solutions.

4.2.4 Constraint exploration solution

Some works in the literature follow alternative approaches for the solution of the
constrained problem (4.6), based on the exploration of the constraint manifold,
e.g., [14, 22, 23, 148, 68, 165]. Given some initial guessr 0, such that fq (r 0) = 0,
these methods iteratively compute a tentative step �r , such that the candidate
solution r 1 = r 0 + � r reduces the objective functionh and approximately satis�es
the constraint fq ' 0. This same idea can be implemented using several numerical
methods. Yang et al. [26], for instance, generate steps on the manifold considering
both �rst and second order approximants {i.e., tangent space and quadratically
parameterized osculant surface{ that can be directly computed in the parameter
space. Alternatively, we approximate the constraint manifold using a sensitivity
analysis matrix computed by virtue of the implicit function theorem. In the next
section, we will explain in detail how to solve the optimization problem (4.6) using
sensitivity-based constraint exploration.

4.3 Sensitivity-based optimization

In this section, we explain in detail an alternative solution to the nonlinear con-
strained optimization, based on the exploration of the constraint manifold. Roughly,
this method �nds an explicit expression of the equilibrium manifold through local
approximation, by virtue of sensitivity analysis. In the next section 4.3.1, we explain
how this is done using the implicit function theorem, and we study the resulting im-
plicit equilibrium function. Then, in section 4.3.2, we reformulate the problem (4.6)
using this function, and we outline a SQP method for solving it. Finally, we will fo-
cus on two speci�c aspects of the algorithm that strongly determine its performance:
the quadratic subproblem 4.3.3 and the projection to the equilibrium manifold 4.3.4.

4.3.1 Implicit equilibrium

We seek a mathematical expression of the the static equilibrium constraint manifold.
The implicit function theorem states that if an equationf (q1; : : : ; qn ; p1; : : : ; pm ) =
f (q; p) = 0 satis�es continuity and di�erentiability conditions, then there exists
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an implicit function q̂ : R m ! R n such that q̂(p) locally approximates the locus
de�ned by f (q; p) = 0. That is, q̂ is an implicit function parameterized byp of the
static equilibrium con�guration as de�ned in (4.4). Although there might not exist
a closed analytic expression of̂q, we can easily compute a linear approximation as
follows. Assuming that the constraint fq is a continuously di�erentiable function
and there exists a point (q0; p0) for which its value satis�es f (q0; p0) = 0, we can
apply the Taylor expansion series on the functionfq , assuming that the implicit
function q̂(p) does exist:

fq (q̂(p); p) ) fq ' fq (p0) +
df q

dp
� p = 0: (4.16)

We know fq (p0) = 0; therefore, applying the chain rule we have:

df q

dp
� p = 0 ) Jqq

@̂q
@p

� p + Jqp � p = 0: (4.17)

An �nally, factoring � p out and reordering terms:

Jqq
@̂q
@p

+ Jqp = 0 ) Jqq
@̂q
@p

= � Jqp : (4.18)

The matrix resulting from solving the linear system,

S =
@̂q
@p

; (4.19)

is called sensitivity matrix, and the corresponding linear approximation of the im-
plicit function, q̂ ' q0 + S� p, de�nes a linear manifold that is locally tangent to
the equilibrium manifold. This can be easily proved by substituting �q = S� p in
the equation that de�nes the null-space of the equilibrium constrain:

�
Jqq Jqp

�
"

� q

� p

#

=

"
0

0

#

; (4.20)

which holds true independently of the value of �p.

Sensitivity matrix

The sensitivity matrix spans the plane tangent to the equilibrium constraint at
the evaluation point r 0. We will refer to the resulting linear manifold ~E as the
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Figure 4.2: This picture shows linear approximations to the equilibrium manifold, for the
di�erent situations that were described in section 4.1.2. The top row depicts some good
approximation examples. However, depending on the nonlinearities of the equilibrium
manifold, the linear manifold might produce poor estimates (bottom left) or degenerate
cases with in�nite (bottom center) or singular (bottom right) functions.

linear equilibrium manifold. Fig. 4.2 shows the linear equilibrium approximations
corresponding to the three design situations introduced in section 4.1.2. In practical
terms, the sensitivity matrix allows us to compute, for a given parameter change
� p, the displacement in the deformed con�guration �q such that the linearized
static equilibrium constraint ~fq = 0 holds. Some other useful conclusions can be
drawn from the numerical properties of the matrix:

� Linear equilibrium : In general, the sensitivity matrix S has dimensionn� m
and [ST ; I ], for I m� m , is a basis whose rows span the linear equilibriumm-
manifold. The intersection of this linear manifold and the target manifold, if
it exists, approximates the set of perfect solutions to the problem introduced
in section 4.1.2 (Fig. 4.2, top row).

� In�nite sensitivity : If Jqq is rank-de�cient, the linear system in (4.18) can-
not be solved. This corresponds to situations for which the linear equilibrium
approximation runs parallel to the shape spaceQ {see Fig. 4.2 picturee. In
practical terms, this means that the deformed con�guration is in�nitely sensi-
tive w.r.t. some of the design parameters, and the matrix is not valid.
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� Singular sensitivity : If Jqp is rank-de�cient, the linear system in (4.18)
can be solved, but the resulting sensitivity matrix is also rank-de�cient. This
corresponds to points where there exists at least a direction in the design space
P for which the deformed con�guration does not change. Here, the sensitivity
matrix is still valid but it may produce di�cult situations when solving the
optimization. In the worst case scenario, the linear equilibrium approximation
runs parallel to the design spaceP {see Fig. 4.2, picturef . In such case,
traversing the linear equilibrium does not change the objective function.

� Ill-conditioning : Sometimes,Jqq and Jqp matrices are ill-conditioned or
numerically close to being rank-de�cient. This might cause thatS is not
well-behaved in two ways. On one hand, the condition number {i.e., the
di�erence between minimum and maximum singular values{ may be high, what
means that the deformed con�guration is much more sensitive to some design
parameters than others. On the other hand, the linear equilibrium manifold
may be almost parallel to the target manifold, what means its navigation have
very little e�ect on reducing the objective function.

In general, the sensitivity matrix provides us with a formal framework to rewrite
the optimization problem (4.6) in terms of the implicit function q̂, as we will see in
the next section.

4.3.2 Sensitivity-based SQP

The implicit equilibrium q̂(p) de�nes the equilibrium con�guration corresponding
to a given parameter vectorp. Using this function, we can remove the static equilib-
rium constraint in (4.6), and reformulate the objective functionh to evaluate shape
descriptors only on equilibrium con�gurations:

ĥ =
1
2

k q̂(p) � qtk2: (4.21)

This way, the �nal equilibrium shape optimization problem is:

min
p

ĥ (4.22)

s.t. pm � p � pM :

Note that the force equilibrium constraint is no longer needed as we implicitly con-
sider only deformed con�gurations in static equilibriumq̂. Generally, there is no
explicit analytic expression for this magnitude, which can be highly nonlinear, and
one can only rely on locally tangent approximations~q {e.g., the one de�ned in the
previous section based on the sensitivity matrix. This problem �nds minima at:
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ĝ =
@̂h
@p

= 0 ) (q � qt )T @̂q
@p

= 0: (4.23)

Algorithm 1: Sensitivity-based SQP
Data: Target shape value:qt

Data: Initial guess: f (q0; p0) j fq (q0; p0) = 0g
Data: Gradient and constraints tolerance:tg; t f

Result: Optimal solution:
f (q� ; p � ) j kfq (q� ; p � )k � t f andkĝ(q� ; p � ; qt )k � tgg

1. Assign initial solution (qk ; pk)  (q0; p0) ;
while k ĝ(qk ; pk ; qt ) k > t g do

2. Quadratically approximate objective~h(p; r k) ' ĥ(q̂) ;
3. Solve QP subproblem:~pk+1  SOLVE(~h; pm ; pM ) ;
4. Compute the implicit deformation ~qk+1 = ~q(~pk+1 ) ;
5. Compute candidate steps: �~q = ~qk+1 � qk and � ~p = ~pk+1 � pk ;
do

6. Compute candidate solutions:~qk+1  qk + � ~q, ~pk+1  pk + � ~p ;
7. Recompute equilibrium (qk+1 ; pk+1 )  PROJECT( ~qk+1 ; ~pk+1 ; t f ) ;
8. Reduce candidate steps length: �~q  � � ~q and � ~p  � � ~p ;

while (h(qk+1 ; pk+1 )) < h (qk ; pk));
end

The resulting optimization is a nonlinear least squares problem. The algorithm 1
outlines the basic steps for the resolution of the optimization problem (4.22) using
a standard unconstrained SQP method with a simple line-search procedure for step
length selection. There are three key parts of the algorithm that will de�ne its
performance:

1. Quadratic subproblem solution (Steps 2{3) . In each iteration of the algo-
rithm, the nonlinear objective function (4.21) is approximated with a quadratic
function, which turns the minimization into a standard box-constrained QP
problem. The subroutine SOLVE encapsulates the computation of a solution
for such problem. Depending on the type of approximation to the objective
function that is used, the overall SQP convergence properties vary. As we will
see, this is also related with how the implicit equilibrium function is estimated
~q(p; r k) ' q̂. In section 4.3.3, we go deeper into the relation between QP
methods and equilibrium manifold estimation.

2. Static equilibrium computation (Step 7) . The implicit equilibrium func-
tion estimation ~q(p; r k) is only locally tangent to the static equilibrium con-
straint. Solving the quadratic subproblem will produce a candidate step
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(� ~q; � ~p) that lies in the manifold de�ned by the implicit equilibrium approx-
imation but for which the static equilibrium constraint does not necessarily
hold. The longer the step, the larger the deviation from the equilibrium man-
ifold k fq(qk + � ~q; pk + � ~p) k > 0. The objective function is de�ned only in
terms of a deformed con�guration in static equilibrium. For that reason, after
each quadratic step, the solution must be projected back to the equilibrium
manifold using the subroutine PROJECT. We have already explained how to
compute the static equilibrium deformation for a given constant parameter
vector in section 3.4. In section 4.3.4, we introduce an alternative solution
scheme that is advantageous in some situations.

3. Step length selection (Steps 6{8) . Minimizing the quadratic approxima-
tion of the objective function ~h(p; r k) reduces the nonlinear objectiveh for
a su�ciently small step. In this algorithm outline, we consider the most ba-
sic line-search procedure: the length of the step is iteratively bisected until
the objective function h is reduced. Adequately selecting the step length is
critical for our problem, as each time a new candidate solution is evaluated,
it is necessary to compute the corresponding static equilibrium, what might
be costly. The study of alternative step selection schemes, e.g., Armijo line-
search or trust-region methods, goes beyond the scope of this thesis. For more
information, we refer the reader to [183].

4.3.3 Quadratic subproblem

The standard quadratic approximation of the objective function (4.21) is:

ĥ ' ~h =
1
2

� pT H � p + � t T g + c; (4.24)

where the vectorg = r p ĥ is the gradient of the objective function, the matrix
H = r 2

pp ĥ is the Hessian, �p = pk+1 � pk , � t = qt � qk , and c is a scalar
constant that does not a�ect the result of the minimization. Computing the critical
point w.r.t. � p of this quadratic function reduces to solving the linear system
H � p = � g. As long as the system matrix is positive de�nite, the resulting step
lies on a descent direction of the objective function̂h, and the step� � p improves
the nonlinear solution for a su�ciently small value of � .

Quadratic subproblems are completely characterized by the approximation to the
Hessian and gradient. Depending on the particular approximation of the Hessian,
the overall SQP convergence properties vary. As we will see, this is also related with
how the implicit equilibrium function ~q(p; r k) ' q̂ is estimated. In the following
section, we review the most common approximations that have been used in the
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literature, and we illustrate their geometrical interpretation.

Linear approximation (Gauss-Newton step)

The simplest estimation of the implicit equilibrium function q̂ is the linear approx-
imation, which uses the sensitivity matrix previously introduced in section 4.3.1:

q̂ ' ~q(p; r k) = qk + S� p: (4.25)

Using this estimation, the quadratic objective function becomes:

ĥ ' ~h =
1
2

jjq0 + S� p � qt jj 2; (4.26)

which in the standard form de�ned in equation (4.24) is

ĥ ' ~h =
1
2

� pT ST S� p + � t T S� p + � t T � t ; (4.27)

and the corresponding gradient and Hessian are

g = ST � t ; H = ST S: (4.28)

This formulation is equivalent to the so-called Gauss-Newton step and the resulting
HessianH is symmetric and semi-positive de�nite by de�nition. The geometric
interpretation of this solution follows straightforwardly from �gure Fig. 4.2, where
linear approximations to the equilibrium constraint manifold are depicted. The
target T and equilibrium E manifolds become linear functions. The problem reduces
to the computation of the shortest distance between two linear manifolds, and it can
be analyzed in terms of the dimensionality of these manifolds:

� Dim (P) > Dim (S). This is analogous to the intersection of two planes in
a�ne 3D space, which has in�nite solutions as shown in Fig. 4.2, picturea. In
this situation, S has dimensionn � m with m >> n ; therefore, H = ST S is
generally singular. The step can be computed by solving

min
� p

1
2

� pT � p s.t H � p = � g;

what selects the solution with the smallest norm.

� Dim (P) = Dim (S). This is analogous to the intersection of two lines in a�ne
2D space, which has a single solution as shown in Fig. 4.2, pictureb. In this
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situation, S has dimensionn � n; therefore,H = ST S is generally invertible.

� Dim (P) < Dim (S). This is analogous to the intersection of two lines in
a�ne 3D space, which has generally no solution as shown in Fig. 4.2, picture
c. In this situation, S has dimensionn � m with m < n ; thereforeH = ST S
is generally invertible. The problem is equivalent to the one of �nding the
shortest distance between two lines.

Figure 4.3: This picture shows two iterations of Gauss-Newton steps for a 2D example
problem. Left) in the �rst iteration, the method provides a good approximation. Right)
in the second iteration, the method clearly overshoots the solution, and the candidate step
requires a bisection to guarantee convergence.

In section 4.3.1, we introduced potential problems connected with the properties
of the sensitivity matrix S. An interesting geometric observation is that ifS is
almost singular, ill-conditioned, or has relatively small norm, the linear equilibrium
and target manifolds might be close to parallel in some direction of the design space
P. If the estimation point r k is still far from the optimum, then the calculation of
the closest point between the linear equilibrium and target manifolds would result
in large steps, as depicted in Fig. 4.3 (right). These steps often overshoot the disc
for which the quadratic function ~h is a good estimator of the nonlinear function̂h
and, consequently, they yield poor performance due to the costly line-search. In
such cases, it might be advisable to use SQP schemes with a more conservative step
length selection procedure, e.g., the Levenberb-Marquardt trust-region algorithm.

Quadratic approximation (Newton-Raphson step)

To reduce the problem of overshooting the step, a higher-order expression could be
used to estimate the implicit equilibriumq̂. Its quadratic approximation yields:
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q̂ ' ~q(p; r k) = qk + S� p +
1
2

� pT C � p; (4.29)

where C is the third-order tensor of second derivativesC = r 2
p q, which indicates

the curvature of the implicit function q̂. Using this estimation, the corresponding
objective function is:

ĥ ' ~h =
1
2

kqk + S� p +
1
2

� pT C� p � qtk2; (4.30)

which in the standard form de�ned in equation (4.24) is

ĥ ' ~h =
1
2

� pT (ST S + � t T C) � p + � t T S� p + � t T � t : (4.31)

Here, third and fourth order terms have been removed to consider only a quadratic
approximation. The corresponding gradient and Hessian of the QP problem are:

g = ST � t ; H = ST S + � t T C: (4.32)

This formulation is equivalent to the so-called Newton-Raphson step, resulting from
the direct application of the quadratic Taylor expansion to the nonlinear objective
function ĥ. Fig. 4.4 shows a depiction of Newton step in the same scenario presented
above. Note that although the expression (4.30) uses a quadratic approximation~q of
the implicit equilibrium function q̂, the QP step is computed minimizing a distance
where the third and fourth order terms have been removed. Consequently, the
QP problem does not exactly minimize the distance from the target manifold to a
quadratic expression of the implicit equilibrium, but an approximation.

Also note that the Gauss-Newton problem formulated in (4.27) di�ers from the
Newton-Raphson problem formulated in (4.31) only in the expression for the Hes-
sian. Gauss-Newton misses the term with second derivatives of the implicit equilib-
rium manifold C. However, as with Gauss-Newton, there are also reasons for not
using the standard Hessian in Newton's method:

� Analytically computing the second derivatives of the implicit equilibrium man-
ifold C is generally very costly. It is possible to compute a numerical estima-
tion of this term using �nite di�erences, but that requires solving m static
equilibria plus m sensitivity computations, one per di�erential change inp.

� The term C in (4.31) is scaled by � t , which is the current di�erence vector
to the solution qt . Consequently, the inuence of this term on the Hessian is
progressively smaller as the solution converges to the optimum. In practical
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Figure 4.4: This picture shows the example depicted in Fig. 4.3 using Newton-Raphson
steps. In both cases, the higher-order estimation of the equilibrium manifold leads to
better candidate solutions and improved convergence.

terms, for a problem where the equilibrium and target manifolds are not far
apart, the term depending on the �rst-order approximationS will su�ce for
a good convergence.

� There is no guarantee that the complete HessianH = ST S+ � t T C is de�nite
positive. Inde�nite matrices can produce non-descendent steps when solving
the linear system associated to the QP problem. In general, inde�nite Hes-
sians arise when there are saddle points in the objective functionĥ, which is
relatively common considering that the equilibrium manifold is often highly
nonlinear.

To avoid some of the limitations mentioned above, many classic works on opti-
mization have proposed alternative approximations to the Hessian, mainly based on
rank-one iterative updates. Next, we will discuss two of them.

Quasi-Newton steps

Quasi-Newton methods are a class of optimization algorithms characterized by ap-
proximating the Hessian with a matrix that ful�lls certain properties. Quasi-Newton
methods are often used when the full Hessian is unavailable, too expensive, or ill-
behaved. In general, the approximation is iteratively computed asB k = B k� 1 + B
such that the secant equationis satis�ed. Considering the gradientg and the param-
etersp in the current and previous steps, the secant equation is stated asyk = B sk ,
for yk = g(pk) � g(pk� 1), and sk = pk � pk� 1. If the dimensionality of the problem
m > 1, the secant equation is underdetermined. The various quasi-Newton methods
are formulated on the basis of the choice of constraints imposed to the resolution
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of the secant equation, which in turn lead to di�erent one-rank updates. We follow
the well-known subclass called BFGS (Broyden-Fletcher-Goldfarb-Shanno), which
guarantees that the resulting matrix is symmetric and positive de�nite. Given that
yT

k sk > t b holds, for some tolerancetb, two alternative updates can be used:

1. Basic BFGS version . Starting from B 0 = I , the following formula computes
an updateB to the approximation of the full Hessian,B k = B k� 1 + B ' H k ,
such that it remains symmetric and positive de�nite:

B =
ykyT

k

yT
k sk

�
B ksksT

k B k

sT
k B ksk

: (4.33)

2. Gauss-Newton version . Starting from B 0 = ST
0 S0 and D 0 = 0, the fol-

lowing formula computes an updateD only to the approximation of the third
order term � t T C introduced in (4.30), with

D =
zkyT

k + ykzT
k

yT
k sk

�
zT

k sk

(yT
k sk)2

ykyT
k ; (4.34)

wherezk = ( y# � D ksk) and y#
k = ST

k � t k � ST
k� 1� t k . Then, the approximation

to the full Hessian is iteratively updated asB k = ST
k Sk + D k ' H k , with

D k = D k� 1 + D .

Note that the latter option is specially attractive as it takes advantage of the
already computed sensitivity matrix S and only re�nes the third order term iter-
atively, while keeping the Hessian well-behaved. In both cases, as an additional
feature, BFGS o�ers the possibility of estimating either the HessianH , or directly
its inverse H � 1 using the Sherman-Morrison formula. For further details on the
numerical properties of quasi-Newton methods, we refer the reader to Nocedal and
Wright [183]. Note that, from a geometric perspective, the quasi-Newton step origi-
nates from the distance to a quadratic approximation of the implicit equilibrium in
(4.30), in which the third and fourth order terms have been neglected. Consequently,
the same limitation mentioned above for the Newton-Raphson step applies.

Additional note about performance

The computation of the sensitivity matrix S requires solvingm linear systems, what
might exceed the time-budget of an interactive design tool, like the one we present in
chapter 6. For the purpose of analysis, throughout this chapter, we have formulated
the sensitivity matrix explicitly. However, solving the QP subproblem requires only
evaluating the gradient g and HessianH of the objective function, and hence we
could apply the adjoint method instead, and avoid computingS explicitly.
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4.3.4 Equilibrium projection

Steps resulting from the solution of the QP subproblem satisfy the equilibrium con-
straint only approximately. That is, new candidate solutions satisfy~fq (~qk+1 ; ~pk+1 ) =
0, only for some approximation~fq ' fq , i.e., in the cases that we have considered,
linear or quadratic. It is necessary to project each candidate solution back to the
equilibrium manifold for two reasons:

1. The evaluation of the objective function is de�ned only for deformed con�g-
urations in static equilibrium. Therefore, to assess whether or not there has
been an improvement in the nonlinear minimization for a given QP candidate
solution, it is necessary to recompute the static equilibrium.

2. The implicit function theorem used for the estimation of̂q in the next step
assumes the hypothesisfq = 0. Therefore, it is mandatory to perform manifold
projection at the beginning of each step.

In this part of the thesis we analyze possible implementations of such projection
subroutine. First, let us formalize some concepts that will be revisited in the follow-
ing sections. Fig. 4.5 shows a simpli�ed representation of the total space, where all
variables corresponding to the deformedQ and designP subspaces are respectively
represented in theq and p axes. We have thoroughly studied the constraintfq = 0,
which represents them-manifold of static equilibrium con�gurations. However, as
introduced at the beginning of this chapter,fp = 0 de�nes another n-manifold at
which the partial derivatives of the elastic potential w.r.t. design parameters vanish.
Recall from section 3.4 that the minimization of potential energy leads to equilib-
rium constraint satisfaction. In this context, we might formulate the projection
subroutine in three possible ways:

1. Potential energy minimization in R (Fig. 4.5, left): minr V(r ).

2. Potential energy minimization in Q (Fig. 4.5, center): minq V(r ).

3. Root-�nding in R (Fig. 4.5, right): �nd( r ) such that fq (r ) = 0

In the following section, we will consider each of this options and analyze their
advantages in terms of exibility, robustness and performance, for the particular
case of inverse elastic design problems solved through constraint exploration.

Potential energy minimization in R

Even though this approach is not practical, as we will discuss next, it deserves some
attention and analysis. Intersections between the two constraintsfq = 0 and fp = 0
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Figure 4.5: This picture shows a compact representation of the projection problem in the
total space R, where all the DoFs corresponding to deformedQ and designP spaces have
been condensed in theq and p axes. Three possible projection schemes are shown, for
two di�erent starting points ~r 1 and ~r 2: a) potential energy minimization in total space
R �nds the critical point of the potential energy function V w.r.t. q and p; b) potential
energy minimization in deformed spaceQ �nds the critical point of V w.r.t. q; and c)
root-�nding in total space R solves the nonlinear system of equationsfq (q; p) = 0.

de�ne critical points of the elastic potential function w.r.t. all the variables of the
total spaceR. It would be possible to implement the projection by computing the
minimization minp;q V(r ) s.t. pm � p � pM . However, this idea might not be
advisable for two reasons:

� First, we are only interested on satisfying static equilibrium constraints on
deformation variables, other considerations might deviate projection from the
original goal and produce worse performance results.

� Second, the behavior of the potential energy function in the total spaceR
is usually full of perils that lead to numerically di�cult situations such as
inde�nite and stationary points. For instance, deformed and material con�g-
urations often produce opposite e�ects on elastic strains, what can easily lead
to R having a non-empty null-space and hence an in�nite number of solutions.
Similarly, material parameters often lead to trivial solutions if they are not
bounded {e.g., lower elastic sti�ness produce always smaller potentials. Some-
thing similar happens with the gravitational potential energy, which vanishes
if the undeformed con�guration of the object collapses.

In practical terms, there is no straightforward application, in the inverse elastic
design scenario, for �nding the design space con�guration with minimum internal
energy. In addition, there might be too di�cult or even impossible for the mini-
mization to converge using standard procedures, making this option not worthy.
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Potential energy minimization in Q

Intersections between the equilibrium manifoldE and a �xed-parameter subspace
p = pc, de�ne critical points of the elastic potential function w.r.t. the variables of
the deformed spaceQ. The problem is reduced to solving the minimization problem
minq V(r ). Note that, even though the potential energy is a�ected by both deformed
con�guration q and design parametersp, this optimization minimizes only the elastic
potential w.r.t the deformed con�guration. If we restrict to the deformed spaceQ,
the potential energy is often relatively well-behaved. A robust SQP algorithm for
the solution of this optimization problem has already been de�ned in section 3.4,
together with various techniques to improve the convergence and robustness of the
method against inde�nite and stationary points.

Fig. 4.5 (center) shows the geometric interpretation of this particular projection
subroutine. In general, the method produces good projected solutions (pointr 1).
However, it is possible to �nd scenarios for which the equilibrium point is relatively
far from the initial point in deformed spaceQ, compared to the corresponding
distance in the total spaceR (point r 2). This might have two main disadvantages:

1. Convergence to the equilibrium point may require more iterations of the op-
timization. As it has been mentioned before, a slow projection subroutine
has a big impact on the performance of constraint exploration optimization
methods, as it is sometimes necessary to evaluate the objective function {i.e.,
recompute projection{ several times during step length selection.

2. In the speci�c case of sensitivity-based optimization methods, the candidate
solution to project will be potentially close to a target con�gurationqt . Long
projection distances would lead to deformed con�gurations far from the tar-
get, and hence slow down the overall convergence of the design optimization
problem.

Motivated by these facts, in the next section we discuss an additional formulation,
based on using a root-�nding algorithm to solve a nonlinear system of equations,
that might outperform the usual solution in some scenarios.

Root-�nding in total space R

Fig. 4.5 (right) shows that, given a candidate solution in total space~r k , there is
actually an in�nite number of possible projection points if we consider traversing
the total spaceR instead of just the deformed spaceQ. Many of these options pro-
duce projected solutions that i) are closer to the initial candidate solution and/or
ii) are closer to the target deformed con�guration. We seek an algorithm to tra-
verse the total spaceR and robustly converge to any of the solutions de�ned by the
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constraint fq = 0, subject to some performance criterion we might need depending
on the particular application. In this section, we propose an approach based on the
under-determined Newton algorithm. We can de�ne the problem at hand analo-
gously to the formulation of the static equilibrium introduced in section 3.4 based
on Newtonian mechanics. We consider the following root �nding problem:

�nd( r ) s.t. pm � p � pM such that fq (r ) = 0; (4.35)

where fq : R o ! R n is a continuously di�erentiable function with o > n. In this
situation, Newton's method begins assuming an initial guessr 0 and then generates
a sequence of iterates via

r k+1 = r k � J � 1
q fq (r k): (4.36)

In practice, this involves solving the linear system:

Jq � r =
�
Jqq Jqp

�
"

� q

� p

#

= � fq (r k): (4.37)

The main di�erence with the root-�nding algorithm de�ned in (3.32) is that, in this
case, the linear system (4.37) is under-determined, i.e., it may have an in�nite num-
ber of solutions. In order to develop a well-de�ned algorithm, additional constraints
must be imposed so that a unique step �r k can be de�ned. The most basic solu-
tion is the so-callednormal ow method, which chooses the solution with minimum
Euclidean norm. This can be easily computed by solving the QP problem:

min
� r

1
2

� r T � r

s.t. Jq � r = � fq (r k) (4.38)

pm � p � pM :

In this explanation, we ignore box constraints and refer the reader to the practical
considerations in section 4.2.3. The step resulting from solving (4.38) is �r = � J+

q fq ,
whereJ+

q = JT
q (JqJT

q )� 1 is the well-known Moore-Penrose pseudo-inverse. This step
is generally referred to as the Moore-Penrose step. This solution of the linear system
is a natural choice for a Newton step because it is the shortest step from the current
iterate to a root of the linear problem and, therefore, the linear model is likely to be
a better representation of the nonlinear function at that step than at other solutions.
Under certain assumptions {i.e.,fq and Jq continuous and di�erentiable andJq full
rank{ this algorithm has proven local convergence. Fig. 4.6 (left) shows a depiction
of the subsequent steps corresponding to (4.38).
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Figure 4.6: This �gure shows two convergence examples for the root-�nding method in
total space R. The left picture corresponds to an extension of the normal ow method:
the steps are necessarily aligned with the normal to the constraint de�ned by the linear
system in equation (4.37). The right picture corresponds to a projection scheme for which
the shortest step objective � r T � r used in equation (4.38) has been modi�ed to account
also for the design target.

While local convergence is guaranteed, our problems are rarely quadratic. Con-
sequently, globalized inexact versions of the method are required. Many global
extensions to the normal ow method have been proposed in the literature, imple-
menting some kind of step length selection.

� Line-search . These are based on the use of a merit function, which is usually
chosen to be 	 = kfqk. A line-search stage is added after the resolution of the
QP subproblem in (4.38) to select� such that kfq (r + � � r )k < kfq (r )k.

� Trust-region . These are based on solving the QP subproblem subject to the
constraint � r < � , for some trust-region area� . Characteristic algorithms of
this class areDogleg methods, which build a piecewise linear curve approxi-
mating the solution using a combination of the Moore-Penrose step and the
point minimizing the problem (4.38) in the steepest descent direction.

For additional information on basic extensions to this algorithm, we refer the reader
to [185]. Alternatively, this problem has also been studied as the minimization of
a nonlinear least squares error functionf = 1=2kfqk2, using both line-search and
trust-region Gauss-Newton-like formulations, for instance, theLevenberg-Marquardt
solutions proposed in [186, 187].

Nevertheless, the normal ow method is not free of limitations:

� Performance . Most of the global extensions use the norm of the forces in
the deformed con�gurationkfqk as the measure of progress. However, we have
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seen in section 3.4 that critical points of this function could be saddle points of
the potential energyV, and hence correspond to unstable equilibria. Further-
more, as introduced before, the equilibrium manifold is highly nonlinear and
traversing the total space is usually full of perils. Consequently, more robust
methods are required to guarantee the fast convergence of these algorithms.

� Flexibility . Taking always steps in the direction of the constraint normal (i.e.,
the Moore-Penrose direction) does not o�er much improvement in terms of
exibility with respect to the potential energy minimization in deformed space
Q. Ideally, we would like to control as much as possible how the algorithms
converge to the nonlinear manifold, for instance, considering the distance to
the design target con�guration � t within the QP subproblem formulation in
(4.38) resulting:

min
� r

1
2

� r T � r + � � t T � t

s.t. Jq � r = � fq (r k) (4.39)

pm � p � pM ;

for some weight� controlling the deviation from the normal ow method. An
algorithm of this kind might e�ectively project an approximate solution back to
the equilibrium manifold, while simultaneously improving the convergence of
the overall inverse design problem, Fig. 4.6 (right). However, to our knowledge,
there are no theoretical studies that analyze how steps moving away from the
Moore-Penrose direction might a�ect convergence, and further work is needed
in this area.

4.3.5 Discussion

In this section, we have analyzed in detail the sensitivity-based SQP algorithm for
the solution of inverse elastic design problems. We have discussed two aspects of the
algorithm that critically de�ne its performance: i) the formulation of the quadratic
subproblem and ii) the projection to the constraint manifold. The optimal choice
highly depends on the particular problem. During the development of this thesis, we
have found that the following approaches perform signi�cantly better than others,
for the kind of design problems that we have dealt with:

� Quadratic subproblem . Gauss-Newton BFGS method generally outper-
forms other options. The BFGS update is only valid when the condition
yT

k sk > t b holds; in other cases, the update yields Hessians with very large
norms, and makes necessary to restart the iterative approximation,B k = I .
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We have observed that update failures happen commonly, when the full Hes-
sian becomes inde�nite or ill-conditioned, being necessary to switch to steep-
est descent. Gauss-Newton BFGS provides a safeguard for such situations
because it switches to Gauss-Newton instead,B k = ST

k Sk , which has bet-
ter convergence properties. Moreover, Gauss-Newton BFGS provides better
overall approximations to the Hessian. Nevertheless, we have seen that Gauss-
Newton steps are prone to overshoot the solution, and hence a conservative
step-length selection procedure is advisable. In our work, we have opted for
a simple line-search and for adaptively controlling the maximum allowed step
length depending on success. However, it would be interesting to consider a
more complex trust-region algorithm.

� Projection scheme . Minimization in deformed spaceQ currently outper-
forms other options. If we restrict to the deformed spaceQ, the potential en-
ergy is su�ciently well-behaved, and the various safeguard techniques de�ned
in section 3.4 guarantee the convergence and the robustness of the method.
Our early attempts to employ the root-�nding algorithm in total spaceS sug-
gest that, in some cases, this approach does provide faster convergence rates of
the inverse elastic design problem. However, projection times are often slower
due to the lack of robustness.

Future work in this area arises from the limitations of our current methods. First,
di�erent higher-order approximations to the equilibrium constraint manifold could
be considered. In particular, the work by Yang et al. [26] also employs second-order
approximants, using quadratically parameterized osculant surfaces. It would be in-
teresting to further study the relationship between that solution and the approaches
analyzed in this chapter, seeking more accurate manifold approximations.

Additionally, the projection scheme based on the root-�nding algorithm in total
spaceR, to our knowledge, has not been explored yet in the context of inverse elastic
design problem. This might open the possibility of formulating projection schemes
that consider the design objective, hence improving the overall convergence. For
that to be possible, we would need to formally characterize the problem, and devise
techniques to overcome the numerical perils of the root-�nding algorithm.



Chapter 5

Flexible rod meshes

Flexible rod meshes are lightweight structures for which heterogeneous global de-
formation behavior can be achieved using a single material, by locally varying the
cross-section of the rods. In this chapter, we study the computational design and
digital fabrication of exible rod meshes as an implementation of deformable sur-
faces. Built upon the mechanical model for the simulation of rod meshes that was
introduced in chapter 3, section 3.2.2, and the inverse elastic shape design framework
that was studied in chapter 4, we propose an optimization-based design tool that
automatically designs printable rod structures that deform with desired behavior.

� The �rst section 5.1 introduces the problem, motivate the use of exible rod
meshes as an option for the prototyping of deformable objects, and summarize
the contributions of this work.

� The second section 5.2 describes how we have used the tools introduced in
previous chapters to create a computational model of the design space and
deformation behavior.

� The third section 5.3 explains how we solved the associated optimization prob-
lem using the sensitivity-based SQP algorithm described in chapter 4.

� The fourth section 5.4 presents the results and fabricated physical prototypes
that validate our method and discusses limitations and potential future work.

5.1 Introduction

In this work, we explore the use of exible rod meshes as an implementation of de-
formable surfaces. They are lightweight, relatively low-cost structures, that can also
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form the support structure of solid objects if �lled or dressed. But most importantly,
the global deformation properties of a rod mesh can be adjusted simply by locally
varying the cross-sectional parameters of the rods. As a result, a heterogeneous
deformable object can be fabricated in one piece and from a single base material
using a variety of rapid prototyping technologies.

We propose a computational tool for the example-based design and fabrication
of exible rod meshes. Our method takes as input several poses of a deformable
surface with known position and/or force constraints, and automatically computes
a printable representation of a rod mesh that best approximates the desired shapes
(Fig. 5.1). As we will see, the use of multiple deformed poses with di�erent boundary
conditions allow us to approximately de�ne in a compact and easy manner the
desired range of movements of a fabricated object. Starting from several deformation
instances with di�erent elasticity properties, we seek a unique design that generalizes
all the behaviors. This facilitates reproducing complex deformation features like
anisotropy, heterogeneity, or model merging (see section 5.4).

Figure 5.1: Comparison between hat simulations and printed results. The two left columns
show the hat with the default rod mesh, which does not deform as desired (shown in
transparent gray). The two right columns show that, by optimizing the radii and rest-
shape of the rod mesh, we can fabricate in one piece a hat that deforms as desired.

One of the main features of our method is the choice of design space. We use rod
meshes dominated by hexagonal faces, because hexagons can stretch, shear and bend
by deforming their edges. Given such a mesh, the design space consists of its rest
shape and two orthogonal radii describing the ellipsoidal cross section of the rods. By
adjusting two orthogonal radii, we manage to control in-plane deformations (stretch
and shear) and out-of-plane deformations (bending) of the surface independently.

In order to estimate the design parameters, we propose a simulation-based opti-
mization approach. To this end, we extended the discrete elastic rod model [45, 46]
to handle connections between multiple rods. The resulting rod mesh mechanical
model has been describe in chapter 3, section 3.2.2. Built upon this simulation
model, we propose an optimization framework that determines design parameters
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by minimizing the approximation error with respect to the input poses while satis-
fying static equilibrium constraints. In order to handle these constraints e�ciently,
we compute gradients of the objective function that satisfy the constraints implicitly
using sensitivity analysis, also already introduced in the last chapter 4, section 4.3.1.

We have applied our design and fabrication method to a variety of examples.
In particular, we have explored the potential of the method for toy and apparel
design. In order to validate the behavior of our designs in practice, we additionally
fabricated three physical prototypes.

The rest of the chapter is structured as follows. First, in section 5.2 we describe
the computational model upon which this design tool is built. We briey recall the
fundamentals of the discretization used in our mechanical model and describe in
depth how it is related with the de�nition of the design space. Then, we explain
the formulation of our optimization problem and the speci�cs of the scheme we have
used for solving it. To conclude, in section 5.4, we show some fabricated results
along with a discussion on the limitations and future work.

5.2 Computational model

In this section, we describe the computational model used for representing the defor-
mation behavior and design space of a rod mesh, following the framework introduced
in chapters 3 and 4. Then, we formulate the optimization problem solved for auto-
matically �nding the design.

5.2.1 Mechanical model

As introduced in section 3.2.2, we have extended the discrete elastic rod model [45,
46] to handle connections between multiple rods. We have followed a co-rotational
approach to estimate the orientations of connections kinematically from incident
rods, we have de�ned a coupling energy and we have showed how to transmit bending
and twist forces between connected rods. Our model derives completely from the
classic theory of Kirchho� rods and features elastic behavior at the connections,
modeling realistic large deformation ever for relatively coarse discretizations. This
fact together with the absence of numerical constraints allows us to formulate and
solve e�ciently a complex optimization problem.

Recall from chapter 3, section 3.2.1, that our mechanical model discretize con-
tinuous adapted-frame rod kinematics in two sets of variables: centerline nodes
ci 2 R 3, which explicitly describe the con�guration of the curve, and edge roll an-
gles � i 2 R , which represent the material frame as the rotation along the tangent
of an adapted reference frame. Centerline nodes corresponding to rod ends incident
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in the same connection are shared resulting in a total ofnn nodes andne edges. In
this work, we adopt the implicit approach for handling the rotation of connections
described in section 3.2.2 and hence no additional DoF are needed. The resulting
deformed con�guration is q = f c; � g 2 R 3nn + ne with c 2 R nn and � 2 R ne . We
denote magnitudes corresponding to the undeformed con�guration as�c and �� .

To ease the fabrication of the exible rod meshes, we assume that the whole rod
mesh is built with a single material, and the mass and deformation properties of
the mesh can be controlled by tuning the cross-section geometry of rods. To this
end, the anisotropic bending model of Bergou et al. [21] provides the appropriate
exibility. The continuous rod mesh cross-section shape is discretized at edges with
a set of variablesr i = f r b

i ; r n
i g, with r b the radius in the binormal direction andr n

the radius in the normal direction. Hence, for a given undeformed con�guration and
fabrication material properties, the deformation behavior is completely determined
by r 2 R 2ne .

5.2.2 Design space

One of the main features of our approach is the choice of design space, which aims
at minimizing fabrication complexity while maximizing design exibility. There are
two major design decisions in our approach that make this possible: i) we de�ne a
hexagonal topology and keep it constant throughout the design process and ii) we
select a compact parameter set that produces a smooth design through interpolation.

Figure 5.2: Comparison of the structural sti�ness of a triangle, a quad and a hexagon
made of rods. We �xed the bottom-most edge of the structure, enforced the indicated
vertex to be at each position in the �eld, and computed the static equilibrium. The plot
shows the resulting deformation energy. Notice that the area of low deformation energy
under stretch is clearly bigger for the hexagonal mesh.
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Hexagonal topology

We seek for a mesh topology that minimizes structural sti�ness, thus enabling a
larger range of feasible designs under the same magnitude of external forces. Rods
are radically more compliant in bending than stretch, hence the topology of the mesh
should be one that enables deformations in all directions simply by bending rods as
seen in Fig. 5.2. We have opted for a mesh topology dominated by hexagonal faces,
as hexagons can deform in all directions by bending their edges. Fig. 5.3 compares
the structural sti�ness of a triangle-mesh, a quad-mesh, and a hexagon-mesh of rods
for a particular deformation scenario. The hexagon-mesh can stretch and shear in
all directions, the quad-mesh resists stretch in directions aligned with quad edges,
and the triangle-mesh is almost inextensible.

Figure 5.3: With the same material and mesh density, a hexagonal mesh is more compliant
to stretch and shear deformations than a triangle or quad mesh, thereby increasing the
exibility of our optimization method. In this example, we show meshes with approxi-
mately the same number of cells, in their rest con�guration (top), and after hanging from
them the same weight (bottom).

To construct a mostly hexagonal mesh, we have explored two options in our
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examples. One is building the dual mesh of an input triangle mesh. The other
one is to initialize a number of samples on a surface and then compute acentroidal
Voronoi tessellation [188]. With hexagon meshes, we have observed that our opti-
mization method is largely insensitive to the speci�c mesh topology. Fig. 5.4 shows
an optimization result that is matched using three di�erent meshes.

Figure 5.4: A hat mesh is optimized to reach the target deformation (shown in light gray)
with three di�erent meshings. All meshes were obtained through Voronoi tessellations;
the �rst two with 64 cells and di�erent initializations, and the third one with 128 cells.

Compact parameterization

Our design space consists of the rest shape of the rod mesh�c 2 R 3nn and the two
radii of the elliptical cross-section at each point of rod meshr = R 2ne . By adjusting
the radii, we manage to control the overall sti�ness of the mesh. Tuning also the
rest con�guration allow us to obtain even more accurate results when considering
multiple target poses.

Both parameter sets change the geometry of the mesh and hence the appear-
ance of the printed object. Wiggly designs a�ect the aesthetics of the mesh but
also compromise the capability of the discretization to approximate the continuum
deformation behavior. Furthermore, in this multi-objective scenario, there is high
chance of over�tting. This problem not only reduces the generalization properties we
seek, but also produces noisy results if the optimization method locally over�ts for
one particular target. With these observations in mind, we follow the heuristic for
the de�nition of a compact design space with naturally smooth shapes introduced
section 4.2.1.

Both for radii and rest positions, we set as design parameters control points along
the rodscc and r c. We place four control points per rod, two at the end connections
and two evenly spaced, and smooth their values using cubic Hermite interpolation.
Overall this choice results in a parameter vectorp = ( r c; �cc), with ( r ; �c) = Z p , for a
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precomputed matrix Z of cubic Hermite coe�cients. To further improve the visual
appearance and deformation behavior of the resulting rod meshes, we also enforce
continuity and alignment of cross-sections at connections in two ways:

1. Connection sharing . Analogously to the coupling technique used for me-
chanical simulation, we share control points among all rods incident in a con-
nection, such that radii magnitude smoothly vary throughout the rod mesh.

2. Normal alignment . We keep material and reference frames at connections
aligned in the rest con�guration. Whenever the rest shape changes, we �t a
plane to the incident edges of each connection. We use the normal of this
plane as the normal axis of rest-shape frames of incident edges. This choice
typically de�nes the �rst and the last rest frames of each rod in the mesh;
the alignment of the other frames of the rod is linearly interpolated from the
extremal values. We span the orthogonal cross-section radii at each point in
the rod mesh using material frames. Thus, as an additional e�ect of frame
alignment, we gain more exibility during optimization because adjusting the
two orthogonal radii is guaranteed to control tangent plane and out-of-plane
deformations.

5.3 Optimization problem

Our optimization framework takes as input a few deformed poses of a rod mesh
under known boundary conditions. Then, it automatically computes the rest shape
and cross-section of the rods such that the mesh best matches the input poses under
the same boundary conditions. The resulting rod mesh geometry is �nally used as
input for an automatic fabrication process.

In this section, we �rst describe the general optimization framework. We use
a Newton optimization method subject to boundary conditions, design constraints,
and static equilibrium constraints, which are enforced implicitly. Then, we describe
an optimization scheme to optimize both the material (i.e., radii) and rest shape of
the rod mesh.

5.3.1 Numerical optimization

Following the notation described in chapter 4, our optimization framework receives
as input a set ofkp target posesf qt

kg in static equilibrium, and for each pose a subset
of DoFs bk = B k �qk speci�ed as �xed boundary conditions. HereB k is a per-pose
selection matrix. The method also supports using forces as boundary conditions.
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We denote asp a generic set ofm design parameters, which could be shape
parameters (i.e., rest-shape coordinates of rod nodes) and/or material parameters
(i.e., radii of rod cross-sections). We then formulate the objective as the squared
error between rod node positions and the input poses:

h(p; f qt
kg; f bkg) =

1
2

kpX

k=1

wkk� (qk) � � (qt
k)k2; (5.1)

where � is a shape descriptor that selects only the nodes of the deformed and
target con�guration. Then, we pose a constrained optimization that minimizes this
objective function, subject to static equilibrium, box constraints on design parame-
ters, and the input boundary conditions:

(q; p) = arg min h(p; f qt
kg; f bkg); (5.2)

s.t. fq;k (qk ; p; bk) = 0; 8k:

pm � p � pM

fq;k denotes a vector that concatenates the forces on all rod nodes for thekth pose,
wk is a scalar to weight target poses, andpm , pM are minimum and maximum
constraints on design parameters. To solve this constrained optimization problem,
we follow the sensitivity-based SQP approach de�ned in section 4.3.2: we enforce the
equilibrium constraints implicitly and iterate QP updates of the design parameters
with box-constraint projection.

In practice, for the calculation of the sensitivity matrix Sk de�ned in section
4.3.1, we computeJqq ;k analytically, but we evaluateJqp ;k using �nite di�erences to
facilitate the exploration of arbitrary design parameters. By handling the static equi-
librium constraints implicitly, the minimization in (5.2) turns into a box-constrained
nonlinear least-squares problem. To handle box constraints on the radii, we simply
project the gradient for those parameters that have reached a limit. Depending on
the approximation of the Hessian of (5.2) and the equilibrium projection scheme,
the convergence properties of the algorithm vary.

� Quadratic subproblem . Computing the full Hessian of (5.2) is prohibitive,
so we have tested approximate methods instead, speci�cally Gauss-Newton
with line-search and Levenberg-Marquardt. Both methods approximate the
Hessian using the sensitivity matrix, and we found them to behave similarly
in our examples. We have also observed that the full Hessian occasionally
becomes inde�nite and its approximations ill-posed. This induces close to non-
descendent search directions, being necessary to switch to steepest descent. As
a compromise solution, BFGS with line-search provides enough robustness as
Hessian updates are often invalid in such situations, thus switching to steepest
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descent. Plus, controlling the step length is key to the performance of our
method; therefore, we enforce a maximum length which is adaptively re�ned
depending on success.

� Equilibrium projection . After every QP update of the parameter vector
p, we solve a static equilibrium problem on all poses. To do this, we use the
energy minimization solver introduced in section 3.4.

Finally, to apply position boundary conditions f bkg, we found that �xing sim-
ulation nodes increases excessively the error on free nodes. Instead, we enforce
boundary conditions using a penalty force, and we progressively adjust the penalty
sti�ness such that the error at constrained nodes is similar to elsewhere in the mesh.

5.3.2 Optimization scheme

As already mentioned, the vector of design parametersp may be formed by material
parameters (i.e., rod cross-section radii) and/or shape parameters (i.e., rest-shape
coordinates of rod nodes). We have observed that adjusting cross-section radii has
the largest e�ect on the bulk �tting error, while adjusting rest-shape coordinates
increases �tting quality for designs that are close to the optimum and have to deal
with objectives. For this reason, we propose the following optimization scheme.

We start with a multiresolution optimization of the material of the rod mesh.
We �rst optimize only the radii control points at connections, linearly interpolated
along rods; then we add radii control points in the middle of rods, with quadratic
interpolation; and we �nally optimize for all radii control points with cubic interpo-
lation. Once the material optimization alone has converged, we start iterating steps
of material and shape optimization directly on all control points. Please see Fig. 5.5
for examples of convergence with our optimization scheme

5.4 Experimental results

In all our examples we follow a similar design pipeline, with small variations. We
start with a surface description of the deformable object to be fabricated, typically a
high-res triangle meshH. At this point, we de�ne the connectivity of the rod mesh
R to be optimized. If the user does not provide a speci�c topology, we automatically
compute one such that it is close to an hexagonal mesh. We project the resulting
connections ontoH , and construct rods connecting them by following geodesics. For
each vertex ofR, we store a mapping to its projection triangle inH .

To create the target poses, we apply some deformer toH . In our examples,
we have explored di�erent deformers, mainly direct artist manipulation and embed-
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ding in another physical model. Given a target deformation de�ned onH, we can
determine the target con�guration of the rod mesh by its stored mapping.

Table 5.1 summarizes the rod mesh size, complexity, continuum material pa-
rameters and radii constraints for all our benchmarks. We have printed some of
the obtained results to serve as a validation of both the simulation model and the
optimization procedure. In all the cases, we have used laser sintering technology
with the material TPU 92A (elastic modulus E = 32MPa, Poisson ration� = 0:48
and density � = 1200Kg=m3).

Model Sheet Hat Dino Smiley
Nodes 693 1727 3219 2663
Edges 710 1790 3330 2892
Rods 71 179 333 723
Connections 54 116 222 494
Material Params. 392 948 1776 2664
Rest-Shape Params. 588 1422 2664 3663
Young mod. (MPa) 32 32 32 10.0
Poisson ratio 0.48 0.48 0.48 0.48
Density (Kg/m 3) 1200.0 1200.0 1200.0 1000.0
Size (m) 0.2 0.23 0.20 0.25
Max. Radius (mm) 5 3 3 4
Min. Radius (mm) 1 1 1 1
RMS Error (mm) 1.03 1.13 0.56 0.41
Computation Time 35min 1h45min 2h20min 3h10min

Table 5.1: Statistics of the benchmarks: model discretization, optimization complexity,
mechanical parameters, design constraints, resulting RMS error, and computation time.

5.4.1 Performance

Our rod structure model introduces additional computational complexity to the
discrete elastic rods approach. Computing the energy gradient and Hessian at con-
nections is costly and involves a reduction in performance. However, we are aiming
for sparse rod structures therefore we can expect the overall complexity to grow
linearly on the number of rods.

Our optimization scheme considers implicit constraints for each target pose,
which are independent from each other. The step is broken into a set of individual
problems which can be solved separately, and the complexity grows linearly in the
number of target poses. As a counterpart, two operations are specially costly: i)
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Figure 5.5: Convergence of the optimization for the three printed results, showing the
evolution of RMS error (in log scale). White dots indicate the iteration from which the
optimization alternates radii and rest-shape optimization.

performing the sensibility analysis and ii) computing the static equilibrium.

The cost of the sensitivity analysis is partially alleviated by incrementally adding
resolution to the parameterization. As shown in Fig. 5.5, error is greatly reduced
in the �rst steps of the optimization, when only one control point per connection
is used. However, improvement gained by subsequentially re�ning the parameter-
ization and iterating radii and rest pose optimization steps is signi�cant. At this
stage of the optimization, steps are more time-consuming so a trade-o� must be
considered between computation time and the quality of the solution.

The cost of computing the static equilibrium is highly dependent on the step
length, as the static solve is computed from the previous equilibrium con�guration.
If the new static equilibrium is too far from the previous one, it is more convenient to
compute equilibrium from the rest con�guration. Moreover, convergence problems
may activate line-search bisections, leading to additional static solves. Adaptively
controlling the maximum allowed step length, along with using the quasi-Newton
update helps to reduce failed steps and has an important positive impact on per-
formance. Table 5.1 shows an approximation of the time needed to converge to the
optimal solution for each benchmark.
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5.4.2 Printed examples

Sheet

Our �rst example consists of a simple sheet (Fig. 5.6), showing the capability of
hexagonal rod meshes of exhibiting varied behaviors. The rod mesh is 0:20m side
and consists of 71 rods and 54 connections forming a regular hexagonal pattern,
with a total of 693 nodes.

Four target poses are de�ned by computing the static equilibrium of the rod mesh
for di�erent radii con�gurations and boundary conditions (�xed points and weights).
These targets are designed to be opposing: the �rst pair (�rst and second row)
imposes bending anisotropy; the second pair (third and forth row) imposes stretching
capabilities. The optimized rod mesh e�ectively captures all required behaviors.
Simulated results has been validated by testing physical printed realizations, which
closely match the behavior predicted by the simulation. Although low frequency
deformations are perfectly replicated, small di�erences appear which may be cause
by inaccuracy in the validation process.

The images in Fig. 5.6 show in semi-transparent gray the target con�guration of
the rod mesh. The default behavior at the beginning of the optimization is shown
in red against the deformations obtained with our optimization framework in green.
Cross-sectional radii optimization is capable of reducing the RMS error to 1:4756mm
per node. We achieve an overall �tting of 1:0322mm upon convergence of rest-shape
optimization.

Hat

Our second example is a hat of approximately 0:23m long, shown in Fig. 5.7 and
Fig. 5.1. The connectivity of the rod mesh is automatically computed using a
centroidal Voronoi tesselation on a high-res triangle mesh. This yiedls to a close-to-
hexagonal mesh consisting of 179 rods, 116 connections and a total of 1727 nodes.

Five target poses (rows in Fig. 5.7) are de�ned using a thin-shell deformer on
the triangle mesh. We have designed several heterogeneous models and used them
to create target poses. Target poses 1, 2 and 3, use a model where the front side of
the hat is much softer than the back side. Target pose 4 uses a homogeneous model
and is intended to make the hat maintain its rest shape under gravity. Target pose 5
uses a model where the left side of the hat is clearly softer than the right side. We �x
some points and pull from handles using forces to achieve interesting deformations.
The deformed position of the handle is considered a boundary condition for our
simulated rod mesh.
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