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Abstract—Surface motion capture (SurfCap) of actor per-
formance from multiple view video provides reconstruction of
the natural nonrigid deformation of skin and clothing. This
paper introduces techniques for interactive animation control
of SurfCap sequences which allow the flexibility in editing
and interactive manipulation associated with existing tools for
animation from skeletal motion capture (MoCap). Laplacian
mesh editing is extended using a basis model learned from
SurfCap sequences to constrain the surface shape to reproduce
natural deformation. Three novel approaches for animation
control of SurfCap sequences, which exploit the constrained
Laplacian mesh editing, are introduced: 1) space–time editing for
interactive sequence manipulation; 2) skeleton-driven animation
to achieve natural nonrigid surface deformation; and 3) hybrid
combination of skeletal MoCap driven and SurfCap sequence to
extend the range of movement. These approaches are combined
with high-level parametric control of SurfCap sequences in a
hybrid surface and skeleton-driven animation control framework
to achieve natural surface deformation with an extended range of
movement by exploiting existing MoCap archives. Evaluation of
each approach and the integrated animation framework are pre-
sented on real SurfCap sequences for actors performing multiple
motions with a variety of clothing styles. Results demonstrate that
these techniques enable flexible control for interactive animation
with the natural nonrigid surface dynamics of the captured
performance and provide a powerful tool to extend current
SurfCap databases by incorporating new motions from MoCap
sequences.

Index Terms—3-D reconstruction, 3-D video, surface motion
capture (SurfCap), video-based animation.

I. Introduction

ADVANCES in 3-D actor performance capture from mul-
tiple view video [1]–[4] have achieved detailed recon-

struction and rendering of natural surface dynamics as mesh
sequences, allowing free-viewpoint rendering of the captured
performance with a visual realism approaching that of the
captured video. These approaches are restricted to replay of the
captured surface motion and do not allow animation control to
adjust the movement or generate novel motions. In this paper,

Manuscript received April 7, 2012; revised December 7, 2012; accepted
April 10, 2013. This work was supported in part by the Engineering and Phys-
ical Sciences Research Council platform, under Grant EP/F02827X/1, and EU
projects RE@CT (ICT-288369) and SCENE (ICT-287693). The skeletal data
used in this paper was provided by the Carnegie Mellon University Motion
Capture Database (mocap.cs.cmu.edu), which was created with funding from
the National Science Foundation under Grant EIA-0196217. This paper was
recommended by Associate Editor S. Zafeiriou.

The authors are with the Centre for Vision, Speech and Signal
Processing, University of Surrey, Guildford, GU2 7XH, U.K.
(e-mail: m.tejerapadilla@surrey.ac.uk; d.casasguix@surrey.ac.uk;
a.hilton@surrey.ac.uk).

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TCYB.2013.2260328

we introduce control techniques for surface motion capture
(SurfCap) sequences, which enable reuse of the captured
content by interactive artistic editing and combination with
skeleton-driven animation.

Conventional marker-based skeletal motion capture (Mo-
Cap) of actor performance is widely used in animation for film
and games as it reproduces natural character motion. A variety
of control techniques for skeletal MoCap have been introduced
which support artistic editing of the captured motion and
interactive animation of characters for games. Due to the use
of markers, MoCap can only reconstruct the motion of a sparse
set of 3-D surface points that are used to estimate the under-
lying skeletal motion. In contrast, SurfCap captures the full
nonrigid surface deformation allowing detailed reproduction
of surface dynamics for skin, clothing, and hair.

This paper introduces control techniques for SurfCap se-
quences, analogous to those available for MoCap, to enable
flexible reuse in animation, while preserving the detailed
surface deformation. The challenge for control of surface
motion is that surfaces generally have several thousand degrees
of freedom (three for each vertex), whereas skeletal motion
based on the human anatomy is typically represented with
around 60 joint angles.

Animation from 3-D performance capture has previously
been achieved by concatenation of segments of multiple
captured mesh sequences based on manually defined transi-
tions [5]. Automatic transition graph construction and path
optimization have been introduced [6], allowing offline key-
frame animation. The level of movement control in these
approaches is limited to transition between the captured
movement sequences. Recent work [7] has exploited skeletal
tracking of mesh sequences to allow increased manipulation
of the captured movement with a skeletal control rig. Novel
skeletal motion is used to index a 3-D video database, allowing
rendering of new motion sequences. Recent research [8]–[10]
has introduced techniques for high-level parametric surface
animation control by nonlinear blending of multiple SurfCap
sequences for related motion. In this paper, we build on this
work by introducing methods to extend the range of motion
beyond the original captured sequences enabling greater artis-
tic freedom in animation from SurfCap data.

We present an interactive framework for control of mesh
animation from SurfCap performance sequences. Three ap-
proaches are introduced to achieve the flexibility of animation
using skeletal MoCap with the detailed surface deformation
of SurfCap: 1) space–time editing with learned surface defor-
mation; 2) skeleton-driven animation with a learned surface
deformation space; and 3) hybrid combination of skeletal-
driven and captured surface motion to extend the range of
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Fig. 1. Overview of surface motion animation control and integration with skeleton-driven animation. Space–time mesh editing and motion parameterization
are applied to SurfCap input motions in order to synthesize novel mesh sequences. Subsequently, skeleton-driven animations are created and linked with the
SurfCap sequences, resulting in hybrid mesh sequences with plausible surface deformation throughout all frames. (a) SurfCap input motions. (b) Space–time
editing. (c) Parameterized motion. (d) MoCap input motion. (e) Hybrid skeletal surface animation control.

movement. This novel control techniques are combined with
parametric control of SurfCap motion to provide a framework
for flexible animation from SurCap data. An overview of the
framework for surface motion animation is presented in Fig. 1.

Contributions are as follows.
Space–time mesh editing with a learned deformation space:

Space–time editing of skeletal MoCap [11], [12] provides a
powerful tool for artistic manipulation by propagating key-
frame edits across the sequence. Application of similar ap-
proaches to animated mesh sequences [13], [14] by key-frame
editing of meshes provides low-level control. In this paper,
we introduce a space–time mesh sequence editing approach
that extends previous work by the incorporation of a learned
surface deformation space from the SurfCap sequences. This
learned model constrains the edited surface deformation to
be similar to previously seen examples which preserves the
underlying anatomical structure and natural deformation of
the captured performance, while allowing animation control, as
shown in Fig. 2. Two novel nonlinear approaches are presented
for propagation of key-frame edits which preserve the natural
surface deformation. Space–time editing of SurfCap provides
a flexible tool for interactive control allowing both low-level
constraints and artistic stylization.

Skeleton-driven animation with learned surface deforma-
tion: Conventionally, MoCap sequences are used to animate
characters with linear blend skinning producing unrealistic
surface deformation which contrasts with the detailed defor-
mation of SurfCap. To overcome this limitation, we exploit
the learned surface deformation from SurfCap sequences to
produce plausible detailed nonrigid surface deformation from
MoCap, as depicted in Fig. 10.

Hybrid skeletal and surface motion control: To extend the
range of character animation beyond the captured perfor-
mance, we combine SurfCap animation with existing databases
of MoCap sequences which include a wide variety of motions.
First, the skeleton-driven animation technique described previ-
ously is applied to the desired MoCap sequence. The resulting
animation is subsequently linked to a SurfCap sequence by au-
tomatically finding suitable transition points between the two
mesh sequences [9], [10]. Finally, space–time mesh editing
is employed to allow seamless transitions between SurfCap-

and MoCap-driven sequences and to overcome the possible
dissimilarity of the linking poses. This hybrid approach greatly
extends the range of motion and allows integrated animation
control from skeleton and surface performance capture.

In order to extend the flexibility of these animation tech-
niques, parametric control of surface motion [8] is incorpo-
rated into our framework. This approach enables the creation
of novel mesh sequences from a SurfCap database, multi-
plying the range of motions than can be synthesized within
the presented hybrid SurfCap–MoCap animation framework.
Results of each approach for animation control are presented
on public databases of SurfCap actor performance capture [2]
for a variety of motions and clothing styles. Hybrid control is
used to produce animation combining SurfCap sequences with
a variety of skeletal MoCap sequences from publicly available
archives [15]. Evaluation demonstrates flexible animation con-
trol preserving the captured nonrigid surface deformation of
SurfCap sequences.

II. Related Work

Reuse and editing of skeletal data: Since the introduction of
marker-based technologies for skeletal performance capture
to the entertainment industry in the early 1990s, a range of
techniques to support editing and reuse have been developed.
Brundelin and Williams [16] introduced parametric motion
control by interpolating pairs of skeletal motions. Parametric
motion synthesis was extended to blending multiple examples
to create a parameterized skeletal motion space [17]–[20]. This
allows continuous interactive motion control through high-
level parameters such as velocity for walking or hand position
for reaching.

Other research has followed the traditional animation pro-
cess: first, edit a set of key frames of the sequence, creating
a set of poses that satisfy the constraints set by the user; and
second, create in-between poses that preserve the naturalness
of the desired motion. The work of Gleicher [11] and Lee
and Shin [12] are examples of space–time editing approaches.
Gleicher [11] solves for both space and time constraints simul-
taneously. Lee and Shin [12] modify the poses of the skeleton
in the key frames by means of an inverse kinematics (IK)
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Fig. 2. Three examples of the effect of incorporating a learned space of deformations into the Laplacian framework. (Left) Original mesh with user-specified
constraints colored in orange and red. (Center) Laplacian editing. (Right) Laplacian editing with learned deformation space. (a) Laplacian editing (center)
causes the tail to fold over itself. Using the learned deformation space (right) preserves the tail shape. Dataset courtesy of [39]. (b) Using the learned
deformation space (right) preserves the leg shape avoiding mesh collapse which occurs with Laplacian editing (center). (c) Using learned deformation space
(right) preserves the leg shape avoiding mesh thinning which occurs with Laplacian editing (center).

solver, and then apply a multilevel B-spline approximation for
the interpolation of poses.

As well as depicting an action, characters communicate
feelings to the viewer and can perform the same action in
different styles. Brand and Hertzmann [21] presented the first
method to automatically separate the motion style from the
structure by an unsupervised learning process based on hidden
Markov models. Following the same learning approach, Hsu
et al. [22] train style translation models that describe how
to transition from one motion to another, and Shapiro et al.
[23] apply independent component analysis to decompose the
motion. Min et al. [24] construct a generative human motion
model using multilinear data analysis techniques. This model
is driven by two parameters and their adjustment produces
personalized stylistic human motion.

Taking inspiration from the aforementioned editing
techniques, in this paper, we present a framework that not
only enables synthesis of novel mesh sequences, but also
allows the extension of SurfCap databases by integration with
skeletal-driven animation.

Multiple view performance capture and reconstruction:
Kanade and Rander [25] pioneered the reconstruction of 3-D
mesh sequences of human performance for free-viewpoint
replay with the virtualized reality system using a 5 m dome
with 51 cameras. Multiple view video reconstruction results
in an unstructured mesh sequence with an independent mesh
at each frame. Advances in performance capture from video
have enabled reconstruction of mesh sequences for human
performance capturing the detailed deformation of clothing
and hair [1]–[4]. These approaches achieve a free-viewpoint
rendering quality comparable to the captured video but are
limited to performance replay.

A critical step for editing and reuse of captured mesh
sequences is temporal alignment to obtain a consistent mesh
structure with surface correspondence over time referred to
as SurfCap [2]. A number of approaches have been proposed
for alignment of mesh sequences based on sequential frame-
to-frame surface tracking. These can be categorized into
two methodologies: 1) model-based approaches, which align
a prior model of the surface with successive frames [3],
[4], [26]; and 2) surface tracking or scene flow approaches,

which do not assume prior knowledge of the surface structure
[27]–[29]. Sequential alignment approaches have three
inherent limitations: 1) accumulation of errors in frame-to-
frame alignment resulting in drift in correspondence over
time; 2) gross errors for large nonrigid deformations, which
occur with rapid movements requiring manual correction;
and 3) they are limited to alignment across single sequences.
Recently, nonsequential alignment approaches [30], [31] have
been introduced to overcome these limitations, allowing the
construction of temporally coherent 3-D mesh sequences from
multiple view performance capture database. In this paper,
we exploit these techniques to obtain SurfCap sequences with
a consistent mesh topology and vertex correspondence for
editing and animation control.

Reuse and editing of 3-D video data: The lack of tem-
poral coherence in the mesh sequence has prohibited the
development of simple methods for manipulation. Animation
from databases of mesh sequences of actor performance has
been demonstrated by concatenating segments of captured
sequences [5], [6], which is analogous to previous example-
based approaches to concatenative synthesis used for 2-D
video [32]–[34]. Recently, example-based approaches through
resampling video sequences have been extended to body
motion [7], [34] allowing offline animation via key frame
or skeletal motion. In [7], model-based skeletal tracking was
used to resample segments from a database of video sequences
based on pose allowing photorealistic rendering with skeletal
control. These approaches preserve the realism of the captured
sequences in rendering but are limited to replay segments of
the captured motion examples and do not allow the flexibility
of conventional animation. Recent advances in nonsequential
alignment have allowed the introduction of techniques for
parameterization and online interactive animation techniques
to control the character’s motion [9], [10].

Analogous to the skeletal IK methods, several mesh editing
techniques have been developed. They generally consist of a
global optimization that tries to preserve the local differential
properties of the mesh, while satisfying user constraints. A
comprehensive comparison between these methods is provided
in [35]. Sumner et al. [36] formulate the problem as a
least squares minimization that manipulates the deformation
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gradients of the triangles, which describe their transformation
with respect to a reference pose. A nonlinear feature space
is constructed using the deformation gradients as feature
vectors and applying polar decomposition and exponential
maps to avoid naive linear blending of poses, which would
lead to unnatural results. Laplacian-based approaches [37]
define a linear operator according to the connectivity and
the area of the triangles of the meshes. The application of
this operator yields a set of differential coordinates whose
direction approximates the direction of the local normals of
the triangles, and whose magnitude is proportional to the
local mean curvature. The main drawback of these methods
is having to deal with rotations explicitly. Lipman et al.
[38] introduced a mesh representation based on rotation-
invariant linear coordinates that addresses this problem: linear
shape interpolation using this representation handles rotations
correctly.

Following the key-frame editing scheme, the mesh editing
problem can be extended to sequences. Xu et al. [13] intro-
duced an alternating least-squares method based on rotation-
invariant linear coordinates [38] demonstrating natural defor-
mation. Constraints at key frames are propagated by a han-
dle trajectory editing algorithm, obtaining an overall natural-
looking motion. Kircher and Garland [14] presented a differ-
ential surface representation which encodes first- and second-
order differences of each vertex with respect to its neighbors
giving rotation and translation invariance. These differences
are stored in connection maps, one per triangle, which allow
the development of motion processing operations with better
results than vertex-based approaches. A limitation of these ap-
proaches is the lack of a mechanism to preserve the underlying
structure of the character’s surface. In this paper, we overcome
this limitation by enhancing the mesh deformation with the
incorporation of a learned deformation space that constrains
the resulting surface based on previously observed examples
and enables the synthesis of novel sequences with natural-
looking deformations.

III. Space-Time Editing of Surface Motion

Skeletal motion sequences explicitly represent the anatom-
ical structure which is preserved during editing. For mesh
sequences, the underlying physical structure is implicit, re-
quiring editing to be constrained to reproduce anatomically
correct deformations. Based on a Laplacian surface deforma-
tion scheme [35], [37], we present a mesh sequence editing
algorithm that incorporates a learned deformation space and
preserves the anatomical structure of the character during
editing. The computation of this learned model is performed
by finding a set of basis vectors that best represents the space
of differential coordinates defined by the 3-D performance
capture data. This effectively combines previous free-form
mesh sequence editing [13], [14] with learned spaces of mesh
deformation [36] within a Laplacian mesh editing framework
[35], [37].

A. Laplacian Mesh Editing Framework

Laplacian mesh editing is based on a differential repre-
sentation of the mesh which allows local mesh properties to

be encoded. The gradient of the triangles’ basis functions φi

yields a 3 × 3 matrix Gj for each of the triangles [35]

Gj = (∇φ1, ∇φ2, ∇φ3) · (p1, p2, p3)� (1)

=
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where p1, p2 and p3 are the vertex positions and n is the unit
normal of the jth triangle. Applying this gradient to every
triangle of the mesh, we can construct a matrix G of size
3m × n, where n is the number of vertices and m the number
of triangles [40] ⎛
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Let A be a diagonal weighting matrix containing the areas
of the triangles, the matrix G�A represents the discrete diver-
gence operator, and the discrete Laplace–Beltrami operator L
can be constructed by performing the following multiplication:
L = G�AG [35]. Given a mesh, its differential coordinates
can be obtained by multiplying the Laplacian operator by its
absolute coordinates δ(x) = Lx, δ(y) = Ly, and δ(z) = Lz. If
we assume the addition of positional soft constraints xc, the
x̃ absolute coordinates of the reconstructed mesh (the same
applies for ỹ and z̃) can be computed in the least-squares sense
[37]

x̃ = arg min
x

(‖Lx − δ(xo)‖2 + ‖Wc(x − xc)‖2
)

(4)

where xo are the coordinates of the original mesh and xc

are the soft constraints on vertex locations given by the
feature correspondence with a diagonal weight matrix Wc.
This equation allows the reconstruction of a mesh by means
of the Laplacian operator L that, due to its linear nature,
does not account for changes in rotation. To allow nonlinear
interpolation of rotation, an iterative approach is taken [41]: in
each step of the minimization, the changes in rotation of each
triangle are computed and the Laplacian operator is updated
accordingly. The nonrotational part of the transformations is
discarded in order to help the preservation of the original shape
of the triangles.

B. Laplacian Editing With a Learned Deformation Space

In this paper, we introduce a novel mesh editing frame-
work based on the Laplacian deformation scheme presented
in Section III-A. The novelty resides in incorporating into
the algorithm the previously observed deformations of the
character. This constrains the possible solutions of the defor-
mation solver, ensuring the preservation of the captured motion
characteristics and underlying anatomical structure of the actor
performance.

For a sequence of meshes {M(ti)}Fi=1, where F is the number
of frames, the mesh motion deformation space is built by
taking each mesh represented in differential coordinates as a
deformation example. Our data matrix M is built by placing
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Fig. 3. Key-frame editing. Original horse (left). Original horse (center)
showing the constrained vertices: in orange the handles and in red the fixed
vertices. Edited horse (right). (Dataset courtesy of [39].)

the concatenated δ(x), δ(y), and δ(z) differential coordinates
of each example in its rows

M =

⎛
⎜⎜⎜⎝

δ�
1 (x) δ�

1 (y) δ�
1 (z)

δ�
2 (x) δ�

2 (y) δ�
2 (z)

...
...

...
δ�
F (x) δ�

F (y) δ�
F (z)

⎞
⎟⎟⎟⎠ . (5)

The data matrix is centered obtaining Mc = M − M̄, where
M̄ is a F × 3n matrix whose rows are the mean of the rows
of the data matrix M. In order to obtain a basis representing
the space of deformations, a singular value decomposition is
performed over the matrix Mc: Mc = UDV�, where matrix V
is a 3n × F with a vector of the basis in each of its columns.
The first l eigenvectors ek representing 95% of the variance
are kept, which gives a linear basis of the form

δ(r) = δ̄ +
l∑

k=1

rkek = δ̄ + Er (6)

where rk are scalar weights for each eigenvector, r is an l-D
weight vector, and E is an 3n × l matrix whose columns are
the first l eigenvectors of length 3n. Space–time editing of key
frames in the mesh sequences is performed using a constrained
Laplacian mesh editing within the space of deformations δ(r).
From (4), we have

r̃, x̃ = arg min
r,x

(‖Lx − δ(r)‖2 + ‖Wc(x − xc)‖2). (7)

Equation (7) allows interactive editing of a key-frame mesh
M(tk) to satisfy a set of user-defined constraints xc resulting
in a modified mesh M ′(tk) with vertices x′(tk). To construct
a basis with respect to the mesh M(ti) for each frame in the
mesh sequence, the Laplacian Li, defined according to the
discrete gradient operator matrix Gi, is used as a reference
in the construction of the data matrix Mi such that δi(x) =
Lix. Constructing a local basis defines changes in shape in
the learned motion space taking the reference frame as the
origin.

Examples of the effect of the basis are depicted in Fig. 2.
Deformations applying the learned deformation space within
the Laplacian framework preserve the surface details and the
underlying structure of the character. This avoids artifacts such
as thinning, unnatural bending of limbs, and collapsing of the
mesh which occur if the Laplacian is not constrained to a
learned deformation space.

C. Editing Mesh Sequences in a Learned Deformation Space

A space–time editing pipeline is introduced in order to
edit a full sequence of meshes. A set of key frames are

Fig. 4. Space–time editing pipeline for mesh sequence editing. The character
height is deformed in an unnatural way during a walk in order to easily depict
the influence of the length of the window of propagation. (a) Original se-
quence. (b) Two edited key frames. (c) Space–time editing with Tk = 3frames.
(d) Space–time editing with Tk = 6frames.

edited within the learned Laplacian framework described in
the previous section, and subsequently these changes are
propagated over a temporal window with the objective of
seamlessly incorporating the edited frames into the sequence.
User input is necessary to both choose the key frames and
select the constrained vertices. Our space–time interface allows
selection of any vertex on the mesh as a constraint.

1) Key-Frame Editing: Key-frame editing is performed
within the Laplacian framework described in Section III-B.
During an offline process, each frame of the sequences of a
given character is used as the reference frame for computing
a space of deformations. In our implementation, all available
frames for the character are considered as deformation exam-
ples for the construction of the deformation space.

The user interactively selects two sets of vertices: 1) the ver-
tices whose position must stay unchanged during the deforma-
tion, and the 2) vertices of the handle, which will be dragged to
a desired position. These positional constraints and the space
of deformations associated with the given frame are incorpo-
rated in (7). Fig. 3 shows an example of a key-frame edit.

2) Space–Time Propagation: Changes to the key frames
must be propagated over time in order to obtain a natural-
looking motion. Three propagation methods are evaluated:
1) linear interpolation; 2) nonlinear interpolation; and 3)
constraint interpolation. A discussion and comparison between
these methods is included at the end of this section.

Fig. 4 illustrates the process of space–time editing for a
walk sequence: a key frame is selected and modified; changes
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are then propagated across a temporal window with weights
shown by the mesh color. In this example, the characters height
is modified in an unnatural way on two key frames to give an
example of the space–time propagation which is easily visible.
More subtle physically realistic editing examples are included
in the results.

a) Linear interpolation: Given an edited key-frame
mesh M ′(tk) with vertices x′(tk), edits are temporally propa-
gated to other frames of the mesh sequence M(ti) with vertices
x(ti) using a spline to define the interpolation weights λi for
the difference in mesh shape �k = (x′(tk) − x(tk))

x′(ti) = x(ti) + λi�k. (8)

Multiple key-frame edits can be combined as a linear sum

x′(ti) = x(ti) +
Kf∑
k=1

λik�k (9)

where Kf is the number of key frames. This linear sum allows
compositing of changes from multiple frames in the sequence
with weighted influence on the shape at a particular frame
providing intuitive control over mesh sequence deformation. In
practice, weights are interpolated over a temporal window of
influence around each key frame tk ±Tk which can be selected
by the user.

Linear interpolation is computationally efficient but may
result in unrealistic deformation such as shortening of limbs.
We therefore propose a nonlinear and a constraint interpolation
approaches which aim to preserve the mesh structure. A
comparative evaluation is presented in Section III-C3.

b) Nonlinear interpolation: We propose a nonlinear
interpolation method based on the propagation of the triangles
transformations between the edited and the original key frame.
Given a key-frame mesh M ′(tk) and its original version M(tk),
the transformation that the jth triangle of M(tk) undergoes
to transform into the corresponding triangle in M ′(tk) is
computed and polar decomposed into its rotational R and
nonrotational S components: T ′j

k = R′j
kS

′j
k. Let q′j

k be the
quaternion associated with R′j

k and q
j

k the quaternion identity
for all j, where the superscript refers to the jth triangle. The
interpolated rotation q′j

i for each frame i of the window of
propagation is computed as

q′j
i = slerp(qj

k, q
′j
k, λi). (10)

Let S
j

k = I for all j, the nonrotational scale/shear part S′j
i

is linearly interpolated

S′j
i = S

j

k + λi(S
′j
k − S

j

k ). (11)

Multiple key-frame edits can be combined analogous to (9)

q′j
i =

Kf∏
k=1

slerp(qj

k, q
′j
k, λik) (12)

S′j
i =

Kf∑
k=1

S
j

k + λik(S′j
k − S

j

k ) (13)

where
∏

represents quaternion multiplication.
Converting q′j

i to R′j
i , a set of transformations T ′j

i = R′j
i S

′j
i

can be computed. Applying these transformations directly to

Fig. 5. Illustration of the constraint interpolation method. First row: original
sequence. Second row: A key frame has been edited and the constraints (in
red and orange) have been interpolated. Third row: for each frame within the
window of propagation, the Laplacian deformer of (7) is run to deform the
meshes subject to the interpolated constraints.

the triangles of M(ti) would result in an unconnected mesh.
The Laplacian deformation framework of (4) is applied to link
the triangles back together.

c) Constraint interpolation: The linear and nonlinear
propagation methods discussed in the previous paragraphs find
the edited meshes M ′(ti) by processing information of the
original meshes M(ti) and the key-frame edits. An alternative
method consists in propagating the position of the constraints
over the temporal window, and subsequently performing a
Laplacian deformation according to (7) to obtain M ′(ti) subject
to the interpolated constraints. This offers the advantage of
controlling the position of the constrained vertices along the
window at the expense of a higher computational cost.

Directly interpolating the constraints coordinates does not
guarantee the preservation of the shape of the submesh
comprised by the selected vertices. Therefore, the nonlinear
interpolation method presented in Section III-C2b is applied
to compute the position of the constrained vertices over the
propagation window. This approach differs from more simplis-
tic approaches where these positions are found by averaging
the rotations for each of the triangles [13]. An illustration of
the method can be found in Fig. 5.

Although relatively computationally expensive, constraint
interpolation provides full control on the positions of the con-
strained vertices along the window of propagation. This allows
fixed constraints to be enforced over a temporal window, for
example, on hand or foot location during contact.

3) Discussion on Interpolation Methods: A comparison
between the three interpolation methods discussed in Section
III-C2 is presented in Fig. 6. This shows the propagation of
the edited key frame of Fig. 3, from the horse gallop sequence.
Applying the linear interpolation causes the front legs to
shorten, while the nonrotational and constraint interpolations
achieve natural-looking results.

The nonlinear interpolation incorporates the transformation
of the mesh triangle by triangle taking into account both the
rotation and scale/shear components of the transformations.
This avoids artifacts related to linear interpolations, such as
shortening of the limbs or distortion of the original shape of
the mesh.
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Fig. 6. Comparison of the propagation of an edit using three different interpolation methods. Above the original sequence, below the propagation window
for each of the methods. Top row: linear interpolation. Middle row: nonlinear interpolation. Bottom row: constraint interpolation. The edited mesh is shown
at the left of the figure, and the frame subsequent to the propagation window is shown at the right. (Dataset courtesy of [39].)

Since applying the constraint interpolation method means
deforming each of the meshes within the propagation window
subject to a set of constraints, it provides greater control over
the position of the constrained vertices along the temporal
window. However, it is computationally the most expensive
method. Computation times for the propagation of the space–
time editing example of Fig. 16 were 1.601, 5.567, and
13.926 s for the linear, nonlinear, and constraint interpolation
methods, respectively.

IV. Parameterized Surface Motion Control

Interactive animation from temporally aligned mesh se-
quences requires the combination of multiple captured se-
quences to allow continuous real-time control of movement
with intuitive high-level parameters such as speed and direc-
tion for walking or height and distance for jumping. Methods
for parameterization of MoCap have previously been intro-
duced [18]–[20] which allow continuous high-level movement
control by linear interpolation of joint angles. Blending of
meshes based on linear interpolation of vertex positions is
computationally efficient but may result in unrealistic defor-
mation or mesh collapse if there are significant differences
in shape. Nonlinear blending of meshes produces superior
deformation [13], [14], [37], [39] but commonly requires least-
squares solution of a system of equations which is prohibitive
for real-time interaction.

Recent work [8]–[10] has introduced methods for high-
level parameterization of SurfCap sequences. In this paper, we
combine parametric control of SurfCap sequences with space–
time editing and skeletal MoCap-driven animation to provide
a framework for flexible animation. Here, we summarize the
parameterization approach for completeness, full details can
be found in [8]–[10]. The nonlinear mesh sequence blending
is given by

Mp(t) = f ({M1(t), ..., MN (t)}, p) (14)

where M1(t), . . . , Mi(t) are the set of source meshes, p is the
vector of high-level parameters, N is the number of sequences,
and f () is a nonlinear mesh blending function. This function
produces a mesh sequence Mp(t) with the required parameter
values p as described in [8].

In this paper, we use a hybrid solution for real-time
mesh blending presented in [9] and [10] which combines
the realistic deformation of nonlinear blending with efficient
online computation. This approach allows us to interpolate
any pair of meshes in real time, enabling synthesis of novel
parametric mesh sequences while maintaining the realism of
the captured data. Furthermore, similarly to [8], [9], and [10],
our framework uses a mapping function to provide high-level
parametric control of the motion. This is required due to the
lack of intuitive parameterization of the motion using blend
weights. Hence, for example, a walk and a run motions can
be combined in real time to create a parametric animation
in which the user controls the speed of a character. Notice
that this mesh blending approach is not limited to pairs of
meshes; it can also be applied to any number of meshes, for
example, a walk, a run, and a turn can be combined to create
a character in which we do not only control the speed but
also the direction. Fig. 7 shows control of speed in a run
achieved by parameterizing a walk and a run motions. Fig. 8
shows results of the parametric control for two examples: 1)
jumping with control of distance; and 2) jumping with control
of height.

V. Hybrid Skeletal and Surface Motion Control

Space–time editing and parametric control techniques pre-
sented in Sections III and IV allow modification of SurfCap
sequences but are constrained to producing similar motions.
The objective of the hybrid skeletal-surface motion control, in-
troduced in this section, is to combine SurfCap with skeleton-
driven surface animation in order to extend the range of
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Fig. 7. Example of parameterized walk-run motion with user control of
speed. First and fourth row: input walk and jog motions. Second and third
rows: results of parametric control for two intermediate speeds.

motion beyond the SurfCap performance, while maintaining
the detailed nonrigid surface dynamics. Integration with skele-
tal MoCap is motivated by two factors: first, the public avail-
ability of large motion capture archives covering a wide range
of motion; and second, compatibility with existing skeleton an-
imation pipelines and tools for skeletal control. Conventional
skeletal animation of mesh surfaces is performed using linear
blend skinning which can result in unnatural deformation such
as mesh collapse around joints. Direct application of linear
approaches to skeleton-driven animation of captured meshes
does not produce natural surface deformation of skin or cloth-
ing resulting in a loss of visual fidelity compared to SurfCap
sequences. Coherent integration of SurfCap and skeleton-
driven animation to produce natural surface motion requires
the transfer of captured surface deformation to skeleton-driven
animation.

To achieve natural surface deformation that matches the
SurfCap performance, we combine the learned surface defor-
mation model introduced in Section III-B with skeleton-driven
animation. This allows novel mesh sequences to be produced
based on existing skeletal MoCap data and with surface defor-
mation that is compatible with the SurfCap sequences. These
sequences are then employed to extend the range of motion
by transition from the SurfCap to MoCap sequences and
vice versa. Hybrid surface-skeletal motion animation control
comprises the following steps.

1) Skeleton-driven animation with learned surface defor-
mation: The skeletal MoCap sequence is used to drive a
learned model of surface deformation using the Lapla-
cian framework introduced in Section III-B. This results
in a skeleton-driven surface sequence with natural de-
formation compatible with the SurfCap data.

2) Parameterization of SurfCap sequences: Novel mesh
sequences are created by interactively controlling high-
level parameters of the character, such as speed in a run
or height in a jump. These parameters can be adjusted
by parameterizing a selection of the SurfCap sequences
present in the database, as introduced in Section IV [8].

3) Transitions between skeleton-driven animation and pa-
rameterized SurfCap: Transition points between the pa-
rameterized SurfCap sequence and the skeleton-driven

Fig. 8. Examples of parameterized motions between two motion sequences
with continuous parameter variation. Results are shown every five frames. (a)
Length of jump parameterized from short (red) to long (yellow). (b) Height
of jump parameterized from low (gray) to high (purple).

Fig. 9. Overview of the skeleton-driven animation with learned surface
deformation approach.

animation are automatically identified based on frames
with similar surface shape and motion.

4) Space–time editing for seamless transitions: If the poses
of the skeleton-driven animation and the SurfCap se-
quence in the transition points found in the previous
step are not sufficiently similar, the space–time editing
approach introduced in Section III can be employed to
create seamless transitions. By making small modifica-
tions to the poses, the visual quality of the transition is
improved, allowing the two sequences to be seamlessly
linked.

A. Skeleton-Driven Animation With Learned Surface Defor-
mation

Linear subspace deformation is widely used as it allows
real-time skeleton-driven mesh animation but may result in
mesh collapse at joints or the candy wrapper effect due to
twisting [42]. In Fig. 10(a) (second row), mesh collapse can
be observed between the leg and torso due to the bending of
the character resulting in unrealistic surface deformation. An
example of this linear approach is the Pinocchio library [43],
which evaluates the blend weights of the mesh surface based
on a reference skeleton. Rigging the captured 3-D surface
produces a model which can be animated from the reference
mesh according to a skeletal MoCap sequence, as illustrated
in Fig. 10.

Plausible nonrigid surface deformation for the skeleton-
driven animation is achieved using the learned Laplacian
deformation as follows (see Fig. 9).
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Fig. 10. Comparison of skeleton-driven animation techniques for pick up and sit down motions. First row: skeletal motion. Second row: linear subspace
deformation. Third row: Laplacian mesh deformation. Fourth row: Laplacian mesh deformation with a learned deformation basis (proposed approach). Fifth
row: difference between learned Laplacian and linear subspace deformation (heat map from low blue to high red). (a) Pick up motion. (b) Sit down motion.

1) Reference mesh/skeleton and rigging weights: A single
reference mesh, preferably in a T-pose, is chosen from
the SurfCap data. Subsequently, a reference skeleton is
fitted into the reference mesh and the vertex weights
are evaluated using the automatic skinning Pinocchio
framework [43].

2) Linear skeleton-driven animation: An initial linear
mesh animation sequence is generated by animating
the reference mesh according to the desired skeletal
MoCap sequence and the vertex weights found by
Pinocchio.

3) Constraint selection: A sparse subset of the linearly
animated mesh vertices are interactively selected for
regions of the mesh which do not exhibit mesh collapse
or other artifacts. These vertices should constrain the
pose of the character.

4) Learned deformation: A surface deformation space is
learned from the SurfCap performance sequences for a
specific actor and clothing. All sequences for the actor
are used to learn a basis model as described in Section
III-B, retaining 95% of the variance in the data.

5) Constrained learned Laplacian deformation: The refer-
ence mesh is deformed using the learned Laplacian de-
formation according to (7). This nonlinear deformation
is performed for each frame of the skeletal sequence,
subject to the positional constraints given by the ver-
tex selection on the linearly animated meshes and the
learned surface deformation space.

Fig. 10 compares the performance of our method with
other skeleton-driven animation techniques. In Fig. 10(a), the

Fig. 11. Transition between parametric walk-run surface motion and skele-
ton driven animation of pick up motion without (a) and with (b) space-time
editing. The sequence is in three sections. Section 1 (meshes sampled every
fifth frame) is a parameterized motion where the user controlled the speed
of the character (yellow, run; green, walk). Section 2 (meshes sampled every
frame) depicts the transition between the parameterized section 1 and the
skeleton driven motion of section 3, colored as a heatmap to highlight the
difference in shape between each of the meshes and the target pose (first
mesh of section 3). Finally, section 3 (meshes sampled every fifth frame)
shows a skeleton driven motion using the learnt Laplacian deformation that
was generated to provide a picking motion to our database. Notice how in (a),
in which the linked poses were not edited, the heatmap shows a large error
in section 2 due to the jump between source and target motions. A smooth
transition is achieved in (b) with the application of space-time editing, which
significantly reduces shape error between linked poses.

learned deformation approach (fourth row) produces a plausi-
ble nonrigid deformation in the pelvis region as the character
bends over, correcting the mesh collapse that occurs with
both linear subspace deformation (second row) and Laplacian
surface deformation (third row). Due to the SurfCap sequences
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Fig. 12. Space–time editing of a walk sequence for changing feet positions (a), collision avoidance (b), and repairing reconstruction errors (c) (the hand has
been moved to grasp the skirt correctly). Original (blue); edited (green).

containing natural shapes for the lower torso which are repre-
sented in the learned Laplacian deformation basis, our method
achieves a natural-looking deformation even though the motion
is different from all of the observed surface motions. Similar
results can be observed in Fig. 10(b) for a skeleton-driven
animation of a sitting down motion.

The difference between the linear subspace and learned
Laplacian nonlinear deformation is presented in Fig. 10 (fifth
row), clearly identifying the corrected region. The traditional
Laplacian approach produces a smoother deformation but
results in a greater collapse due to the preservation of triangle
shape for the reference mesh. In contrast, learned surface de-
formation forms a nonlinear subspace (linear in the Laplacian
differential coordinates) which constrains the skeleton-driven
mesh animation to plausible surface deformations overcoming
the limitations of linear deformation and produces a mesh
animation with similar deformations to the SurfCap data for
a specific actor.

B. Transitions Between Skeleton-Driven Animation and
Parameterized SurfCap

Two stages are required for transition between parameter-
ized SurfCap motion and skeleton-driven surface animation (or
vice versa): 1) identification of transition points with similar
shape and motion; and 2) space–time editing to produce
a seamless transition if poses are not sufficiently similar.
Possible transition points between this parametric space and
the rigged skeletal sequences are found by measuring the
shape and motion similarity between all points in the space.
A regular grid sampling of the continuous parametric motion
space is used with a step of �α = 0.1. The similarity
is evaluated between each sample point in the parametric
motion space and each frame of the skeleton-driven motion
sequence.

The mesh and motion similarity between meshes for any
pair of source Mi and target Mj frame meshes s(Mi, Mj) is
defined as follows. As the vertex correspondence between the
source and target meshes are known, we can compute the
shape and motion similarity between any pair of meshes. The

Fig. 13. Space–time editing of a walk sequence for stepping onto a platform.

Euclidean distances between their vertex positions and veloci-
ties give a distance: d(Mi, Mj) = 1

Nv
(‖Xi−Xj‖2 +λ‖Vi−Vj‖2),

where vertex velocity Vi(t) = Xi(t) − Xi(t − 1). Similarity is
then computed by normalizing by the maximum distance:

s(Mi, Mj) = 1 − d(Mi, Mj)

max(d(Mi, Mj))
.

The pair of meshes that have the highest similarity
arg maxij{s(Mi, Mj)} are annotated as the optimal transition
point between the source and target sequences. For real-time
interactive animation, when the user chooses to transition from
the parametric motion space to the skeleton-driven animation,
the character will move to the source frame of the transition
(in the parametric space) and subsequently transition to the
target frame. To achieve smooth transitions, linear blending
of meshes is performed over a window of n frames around
the transition meshes. Experimental results show that n = 5
achieves natural results. Using higher values would cause the
appearance of artifacts such as foot sliding.

C. Space–Time Editing for Seamless Transitions

If the shape and motion at the optimal transition point
are not sufficiently similar, then space–time editing can be
employed to modify the skeleton-driven animation to match
the parametric motion. This is required to avoid jumps in char-
acter pose or motion where the skeletal motion is significantly
different from the parametric surface motion.

The space–time mesh editing technique, presented in
Section III, is applied to modify the skeleton-driven animation.
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Fig. 14. Space–time editing of arm and leg movement for a street dancer sequence: original (blue); edited (green).

The transition target frame from the skeleton-driven animation
sequence is interactively edited to match the source frame
from the parametric motion space. Laplacian mesh editing
with the learned deformation space is constrained to match
vertex positions between the source and target sequences using
(7). Space–time propagation is then used to propagate changes
across the skeleton-driven animation sequence.

Space–time editing results in a new edited skeleton-driven
animation sequence which allows a seamless real-time tran-
sition between the parametric motion space and the target
skeletal motion. This enables extension of the range of char-
acter motion exploiting existing databases of skeletal MoCap
sequences, while maintaining the natural surface deformation
of SurfCap for a specific actor. Fig. 11 illustrates the tran-
sition between a parameterized surface and a skeleton-driven
animation with and without space–time editing. The transition
frames are depicted as a heat map showing the difference to
the target frame (first frame of the target motion in red). The
heat map shows that without space–time editing, Fig. 11(a),
there is a large difference between the last frame of the
transition and the first frame of the target motion, resulting
in an unnatural jump in the motion. After space–time editing,
the last frame of the transition has only a small difference to
the first frame of the target motion. This allows a seamless
transition between the parameterized surface motion and the
skeleton-driven animation. Further results of transitions are
presented in the accompanying video.

VI. Results and Evaluation

Evaluation is performed using a public database of SurfCap
sequences [2] which includes 3-D mesh sequence reconstruc-
tions for multiple actors wearing a variety of clothing and
performing a range of motions. Temporal surface alignment is
performed using the nonsequential nonrigid surface tracking
approach [31]. MoCap sequences used in the hybrid skeletal-
surface animations are from the Carnegie Mellon University
(CMU) archive [15].

A. Space–Time Editing of Surface Motion

Results of the space–time editing technique presented in
Section III, which incorporate a learned deformation space,
are performed on both synthetic and captured mesh sequences.
Meshes are textured with a flower pattern to demonstrate
how the smoothness of the temporal alignment is maintained
throughout the editing process. A variety of editing operations
illustrate the flexibility of the proposed approach. Space–time

Fig. 15. Stylized sequences: original (blue); edited (green). (a) Walk with
raised knees (b) Jump with squash and stretch effects.

editing of a walk sequence to modify feet positions, avoid
obstacles, and step up onto a platform are shown in Figs. 12
and 13. This illustrates a common application of space–time
editing of captured sequences to modify contact positions
according to scene constraints. In Fig. 12(c), the space–time
editing approach has been used to repair reconstruction errors.
The original sequence (see accompanying video) shows a twirl
where there is a loss of contact between the hand and the skirt.
In the edited sequence, the hand has been moved to grasp the
skirt correctly.

Fig. 14 shows a more complex space–time edit to modify the
arm and leg movements for the street dancer, while preserving
both the anatomical structure and surface dynamics.

Space–time editing also allows artistic stylization of the
motion to create common animation effects such as movement
emphasis, exaggeration, and cartoon effects of squash stretch
as well as retiming of the sequence for anticipation. Fig. 15
presents examples of motion stylization to exaggerate the
walking of a character with a loose dress and to produce a
cartoon style squash-stretch effect for a jump.

Finally, Fig. 16 shows the editing of a synthetic horse
galloping sequence where the torso of the horse has been
lifted. This example illustrates the effect of applying large
changes to a mesh sequence. Constraining the deformation
to a learned deformation space preserves the mesh structure
ensuring a natural motion sequence.

Results of space–time editing demonstrate that the approach
allows flexible interactive editing of captured sequences to
satisfy user-specified constraints, while preserving the natural
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Fig. 16. Space–time editing of a synthetic horse galloping sequence. Top row: original. Bottom row: edited. (Dataset courtesy of [39].)

TABLE I

Computation Times of a Selection of Key-Frame Edits for

Sequences of Figs. 12(b), 14, 12(c), and 16

Data Sequence No. of Edit No. of Time (s)type vertices constraints
1 236 0.636

Cones 2 242 0.635
[Fig. 12(b)] 2886 3 268 0.644

4 247 0.631
5 255 0.643
1 1585 1.187
2 1345 1.446
3 1270 1.430

Real data 4 1494 1.171
Dancer 5 1508 0.880

(Fig. 14) 5580 6 1497 1.042
7 1560 1.082
8 1147 1.057
9 704 0.987

10 1432 1.051
11 1258 1.031
1 691 0.829

Real data 2 722 0.396
for Skirt 2854 3 613 0.673

stylization [Fig. 15(a)] 4 595 0.820
5 550 0.658
6 588 0.536

Synthetic
Horse

(Fig. 16) 8431 1 6753 1.601

Each edit number corresponds to a single key-frame edit and has a
deformation time associated with it.

spatiotemporal dynamics of the captured motion. The linear
space–time interpolation approach has been used to gener-
ate the resulting sequences of Figs. 12–15. Since the edits
performed over these examples are small deformations, this
has not introduced visual artifacts. For the Horse sequence of
Fig. 16, where the key frame undergoes a large deformation,
the nonlinear interpolation was preferred to generate the final
sequence. As shown in Fig. 6, in this case the linear method
introduces significant errors if applied.

Computation times for a selection of key-frame edits can
be found in Table I. The learned Laplacian deformation solver
takes 0.5–1 s for meshes of 3000–6000 vertices, allowing
interactive editing with rapid feedback. These timings are for
a CPU implementation of the approach; real-time performance
could potentially be achieved with transfer of the Laplacian
solver to a GPU. Typical values of Tk are in the range 4–8
frames.

B. Hybrid Skeleton and Surface Animation Control

Fig. 17 presents two examples of hybrid motion control
transitioning from a parameterized surface motion space to

Fig. 17. Hybrid sequences transitioning from parameterized surface motion
to skeleton-driven animation (every fifth frame shown). (a) Transition from
jumping parameterized motion (purple, section 1) to walk motion (green,
section 2) to skeleton-driven drinking motion (red, section 3) (b) Transition
from walk-run parameterized motion (yellow-green with change in parameter,
section 1) to skeleton-driven boxing motion (section 2).

a skeleton-driven animation. The corresponding animation
sequences can be found in the accompanying video. A drinking
and a boxing skeletal sequences from the CMU database were
animated employing the technique introduced in Section V-A,
presenting surface deformation which is coherent with the
SurfCap data. As demonstrated in the results, the proposed hy-
brid approach based on learned Laplacian deformation enables
the creation of plausible animations from the combination
of SurfCap and MoCap sequences with seamless transitions.
This extension of SurfCap using existing archives of skeletal
MoCap greatly increases the range of character motion without
compromising the natural nonrigid deformation of captured
surface motion.

VII. Discussion and Limitations

The flexibility of the presented hybrid animation technique
is increased when the SurfCap database contains a broad
collection of motions. In order to achieve parameterized
surface motion control, the database should contain param-
eterizable motions (walk/run at different speeds, jumps at
different heights, etc.) and Laplacian deformation benefits
from the incorporation of a learned deformation space under
the assumption that the database contains a sufficient range of
motion for a given character. If the user constrains the mesh
such that the target deformation lies completely outside the
learned space, the underlying structure of the character might
not be preserved. An example of this effect is demonstrated in
Fig. 18. Applying the skeletal animation technique presented
in Section V-A, although the torso deformation is natural
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Fig. 18. Skeleton-driven animation for a squat motion showing the limita-
tions of our approach using a learned deformation model. First row: skeletal
motion. Second row: linear subspace deformation. Third row: Laplacian
mesh deformation. Fourth row: Laplacian mesh deformation with a learned
deformation basis (proposed approach). Fifth row: difference between learned
Laplacian and linear subspace deformation (heat map from low blue to
high red).

throughout the squat sequence, the leg shape is unnatural under
extreme bending as no similar pose is present in the SufCap
sequences used to learn the deformation basis. Note in this ex-
ample linear and traditional Laplacian deformation suffer even
greater visual artifacts such as unnatural shape of the torso
and the pelvis area. To overcome the limitation of the current
approach and increase the range of movement for a limited
database of SurfCap examples, an independent deformation
basis could be learned for each body part. In principle, using
a local shape basis rather than the global basis used in this
paper would allow greater range of manipulation of the whole
body shape.

VIII. Conclusion

This paper introduced a framework for interactive animation
control of SurfCap sequences. Three novel approaches were
introduced to facilitate flexible modification and extension of
the captured motion.

Space–time editing using a learned surface deformation
basis allowed interactive low-level control and editing of cap-
tured surface sequences of actor performance. This low-level
control was essential for artistic manipulation and imposing
constraints such as foot-floor or hand-object contact. To extend

the range of motion beyond that of captured surface sequences,
a hybrid control approach was introduced which allowed
the combination of MoCap-driven animation with SurfCap.
A critical contribution to achieving this hybrid solution was
the introduction of skeleton-driven mesh animation using a
learned Laplacian deformation basis. This enabled meshes
to be animated from skeletal motion with plausible natural
nonrigid surface deformation of skin and clothing. Space–time
editing was employed to achieve seamless transitions between
parameterized surface motion and skeleton-driven sequences.
Hybrid skeleton-surface animation allowed integration of ex-
isting MoCap archives with SurfCap, greatly extending the
range of motion while maintaining the natural nonrigid surface
deformation characteristics of skin and clothing. The frame-
work introduced in this paper allowed flexible interactive con-
trol of SurfCap, providing the foundation for a new approach
to character animation based on SurfCap of actor performance.
SurfCap has the potential to reproduce the complex dynamics
of real nonrigid surface deformation for skin, clothing, and
hair which requires computationally expensive simulation in
current skeleton-driven character animation pipelines. Future
challenges include the integration of surface appearance and
control techniques for modeling real-time character interaction
and simulation of motion dynamics.
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