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ABSTRACT

The research and use of the term resilience in various types of technological, physiological, and socioeconomic systems has become very
topical in recent years since this term has been applied in different fields with different meanings and connotations. One of the most common
meanings of resilience is related to a positive idea that addresses recovery from failures. This study proposes to establish a theoretical and
mathematical framework for discrete resilience that allows different systems to be quantitatively compared from this point of view. Also,
a definition and a local view of the concept of resilience applicable to different characteristic measures in the field of complex networks is
provided. Furthermore, several computational experiments are presented on the values of this new parameter in different types of synthetic
and real-world networks, supplying a new set of conceptual tools for network science research.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0124687

The term resilience has been widely applied, thus the literature
is spread and oriented to particular applications. As a common
characteristic underlying all approaches, resilience appears as the
capacity of recovering from failures as well as adapting to a new
reality. We focus on the capacity of a system to return to the origi-
nal situation. The topology of the underlying network, in systems
that can be described by discrete models, is crucial for the con-
cept of resilience. However, few papers have taken into account
the relationships between the substructures of the network, and
less attention has been paid to a formal definition. This study pro-
poses to study the behavior of the network in such recovery pro-
cesses by using graph topological indices, thereby establishing a
theoretical and mathematical framework for a discrete resilience
concept.

I. INTRODUCTION AND PRELIMINARIES

The term resilience came from the Latin resilio that means
“rebound”1 and has been applied in different fields such as ecology,

psychology, risk/disaster management, transportation, engineering,
energy, or economy (among others), with different meanings.2–6

Thus, the literature on the concept of resilience is spread, scattered,
and oriented to particular applications. As an underlying character-
istic common to all approaches, resilience appears as a positive idea
that addresses recovery from failures as well as the ability to adapt to
a new reality.

In any case, it should be noted that the concept of resilience
has been approached with various general definitions from multi-
ple disciplines.7 Many of these definitions are similar and are related
to concepts such as vulnerability, robustness, flexibility, and failure
tolerance. For example, in Ref. 8, we find an approximation to the
concept of resilience when is understood as the intrinsic ability of
a system to adjust its functionality in the presence of a disturbance
and unforeseen changes. Other approaches to this concept can be
found in Ref. 9, where resilience is defined as the “ability of a sys-
tem to maintain its functions and structure in the face of internal
and external changes and to degrade gracefully when it must,” and
in10 where it is defined as the “ability of the system to withstand
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a major disruption within acceptable degradation parameters and
to recover with adequate time and reasonable costs and risks.” We
can find new nuances in the definition of the resilience of a system
in Ref. 11, where it includes both the negative impact that distur-
bance causes in a system and which is measured by the difference
between the expected and the disturbed level of performance, as well
as the amount of resources employed to recover the disturbed sys-
tem. Finally, we think that it is important to mention the definition
given in Ref. 12 by the American Society of Mechanical Engineers
where resilience is defined as the ability of a system to withstand
external and internal disturbances without interruption of the per-
formance of the system function or, if the function is disconnected,
to fully recover the function quickly.

In systems that can be described by discrete models, the under-
lying network topology is crucial to understand the idea of resilience,
meaning as the ability of the system to return to the original posi-
tion or to an equilibrium point. However, few works have taken
into account the relationships between the different substructures
of the network, and up to the present time, it has not been achieved
to establish a formal definition of resilience suitable for networked
systems. Following Ref. 13, there is a general question that arises
naturally: “how can one quantify resilience?” It is remarkable that
many authors have studied system resilience.1,4,14–21 The ideas under-
lying these types of studies give alternative meanings to resilience
that reflect different points of view. Thus, the concept of resilience
comprises meanings ranging from stable or equilibrium states of a
system to the capacity of a system to maintain its function when it
suffers an incident. In any case, as a common characteristic underly-
ing all approaches, resilience appears as a positive idea that addresses
the recovery from failures regardless of their origin as well as the
adaptation to new conditions, contemplating, among other ele-
ments, the amount of perturbations that a system can absorb and
remaining the same state or the capacity to “manage the change”
by adapting to a new reality.2–6,22,23 Other approaches, such as that
developed in Ref. 20, identify two main types of resilience in systems:
static resilience and multistage resilience, depending on either on
the maintenance of the existing functionality developed by the sys-
tem after being perturbed by failures or attacks, or on the speed with
which the state of the system returns to historically normal levels.

We will focus on the capacity of a system to return to the origi-
nal position or to an equilibrium point thus we are interested in the
rate at which a system returns to the state before the disruption or
perturbation. Moreover, we take into account the damage produced
to the system to measure the rapidity of the recovery. In systems than
can be described by discrete models, the topology of the underlying
network is crucial for the concept of resilience. However, few papers
have taken into account the relationships between the substructures
of the network and less attention has been paid to a formal definition
of resilience.

An example of the potential application of this work can be
found in both the analysis and design of transportation networks
when a disruption happens.24,25 Then, passenger or freight flow
through stretches, sections of streets or roads, is interrupted. In this
case, often the recovery of the normal functioning is gradual.

The main purpose of this paper is twofold: first to define a
functional that let measure the resilience of a system from different
viewpoints, in accordance with the performance function of interest;

second, to show how the introduced concept of resilience behaves in
different kinds of networks.

In order to get insight into the dependency of the resilience of
the basic structure of the system, we assume the following assump-
tions:

• We suppose that the system can be represented by an
unweighted and undirected graph.

• Since the functionality of a network relies on the interactions
between their components, in our case the nodes of the network,
we assume that the disturbances are produced in links.

• We consider that the recovery of the system takes place in dis-
crete instants of time. Without loss of generality, we assume a
constant step between consecutive times.

• The recovery process consists on adding a link, each time, from
the set of damage edges.

Most of the content of these assumptions can be relaxed which
is out of the scope of this paper.

The structure of the paper is as follows. Section II describes the
methodology that has been used in this work and provides a frame-
work for the new structural parameter in complex networks that we
introduce. We define a discrete index named local resilience, and
we present the first results on some types of graphs. Section III is
devoted to several computational experiences, where results on syn-
thetic and real networks are shown, analyzed, and discussed. Finally,
Sec. IV is dedicated to present some conclusions.

II. METHODOLOGY

Let us consider a complex network modeled by a finite graph
G = (V, E). For a vertex i ∈ V, let N(i) be the set of edges incident to
i and δi = |N(i)|, that is, the degree of such a vertex in graph G. In
this work, we consider disruptions on the edges of a single vertex i
that disconnect such a vertex from its neighbors but the vertex itself
does not disappear, it only loses its incident edges. Let us denote
by Gi = (V, E \ N(i)) the resulting graph from G when the inci-
dent edges to vertex i have been removed. Thus, we define the local
performance of the vertex i ∈ V in the graph G regarding the
measure m as

Pi
m(G) =

m(Gi)

m(G)
. (1)

Different topological indices of graphs can be used as a local
measure function to approach the local performance of a node in a
complex network, depending on our purpose. In this work, we focus
on the (global) efficiency26 of G, denoted by E(G), as the local perfor-
mance function. Let d(i, j) be the distance between two vertices i and
j of graph G, that is, the length of a shortest path between these two
nodes in G. Then, the efficiency of G is defined as

E(G) =
1

n(n − 1)

∑

i 6=j∈V

1

d(i, j)
,

which is simply the average of the inverses of the distances over all
pairs of vertices of G. Thus, in this case, the local performance of a
vertex i ∈ V in the graph G regarding the efficiency E(G), following
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Eq. (1), is

Pi
E(G) =

E(Gi)

E(G)
.

Observe that the local performance defined by the efficiency mea-
sure is a normalized value within the interval [0, 1], due to the
monotonicity of the efficiency index. That is, the efficiency param-
eter satisfies the property that E(G′) ≤ E(G), for any G′ obtained by
removing some edges from G.

In order to study the behavior of the defined concept, let us
consider the recovery process in a network when the damage is
located in a single node, which means that node loses all its inci-
dent edges, as we mentioned above. Then, we study the evolution
of the local performance value in such a node when just one edge is
added in each step, by retrieving the edges one by one along all the
recovery process.

First, let us introduce some general notation. Let G be a
graph and i a vertex in G where the disruption is yield. Let N(i)
= {e1, . . . , eδi

} be the set of edges incident to i. In the following, for
clarity in notation, we identify the edge ej with its label j. The dif-
ferent orders to retrieve the edges incident in node i correspond to
each permutation of the set of edges N(i). Then, for a given permuta-
tion σ =

(

k1, . . . , kδi

)

, we denote by Pi
m,kj

(G) the local performance

of vertex i when edge kj is retrieved after the j − 1 previous edges
have been recovered, for j = 1, . . . , δi. Thus, we have a sequence of
values for the local performance of the vertex i described as

(

Pi
m,k1

(G), . . . , Pi
m,kδi

(G)

)

. (2)

Let us denote by t(kj) the instant of time when the edge kj is
recovered. Then, t(k′

0) represents the moment of disruption exactly
and t(k0) represents the moment when the recovery process starts.
Let Pi

m,k′
0
(G) be the local performance value when the vertex i is

completely disconnected from graph G, that is the minimum local
performance in such a node exactly in the moment of disruption, in
the instant t(k′

0). We assume that the recovery process of the sys-
tem does not start at the same instant that the disruption yields,
i.e., there exists a reaction time of the system or disrupted state of
the complex network, which we have represented by the interval
[t(k′

0), t(k0)]. On the left plot of Fig. 1 are represented the local per-
formance values along all the recovery process for a given node i,
where the disturbance yields. We mentioned that Pi

m,kj
(G), repre-

sents the local performance of vertex i when edge kj is retrieved after
the j − 1 previous edges have been retrieved, which produces the list
(2), for j = 1, . . . , δi. Then, for a given permutation σ , we consider

1

δi + 1



Pi
m,k′

0
(G) +

δi−1
∑

j=0

Pi
m,kj

(G)



 , (3)

which is the sum of the local performance values, along all the recov-
ery process in node i, divided by the number of edges plus one, which
represents the number of periods of the recovery process, from the
disrupted state to the last retrieved edge.

Observe that the value Pi
m,k0

(G) is contained in every sum of

Pi
m,kj

(G), from j = 1 to δi − 1. That is, each term Pi
m,kj

(G) can be

decomposed into two parts, the first being Pi
m,k0

(G) and the sec-

ond the real improvement in the local performance for adding a new
edge. Then, in order to compute just the improvement of the local
performance in vertex i, from the beginning of the recovery process
exactly, that is, from the first to the last recovered edge, let us adjust
the expression (3) to the following (see the left plot in Fig. 1):

1

δi + 1

δi
∑

j=0

(

Pi
m,kj

(G) − Pi
m,k0

(G)

)

. (4)

Finally, we define the local resilience in vertex i regarding to the
measure m under the recovery process σ as

Ri
m,σ (G) =

1

δi + 1

δi
∑

j=0

(

Pi
m,kj

(G) − Pi
m,k0

(G)

1 − Pi
m,k0

(G)

)

, (5)

which is a normalized value within the interval [0, 1], obtained from
the expression (4) (see the right plot in Fig. 1).

Observe that Eq. (5) establishes a general definition for dis-
crete resilience. It is flexible due to its possibility to consider any
local measure function m. In this paper, we focus on the efficiency
E = E(G). Hence, the exact resilience definition that we consider in
this work for examples and computational experiments is

Ri
E,σ (G) =

1

δi + 1

δi
∑

j=0

(

Pi
E,kj

(G) − Pi
E,k0

(G)

1 − Pi
E,k0

(G)

)

. (6)

In the process where only one edge is recovered in each period
of time, two different and antipodal strategies have been considered
in this study:

• Smart recovering, when it is recovered the edge which pro-
vides the highest value of the local resilience as possible in each
moment of the recovery process, from the first to the last edge.
That is, in each step of the recovery process after a disturbance
in a node, among all the links that can be recovered at such a
moment, to select the edge whose recovery provides the best
local performance value as possible.

• Worst-case recovering, when it is recovered the edge which
provides the lowest value of the local resilience as possible in
each moment of the recovery process, from the first to the last
edge. That is, in each step of the recovery process after a dis-
turbance in a node, among all the links that can be recovered at
such a moment, to select the edge whose recovery provides the
worst local performance value as possible.

Observe that is a Greedy algorithm, due to the locally optimal
choice is taking at each stage, according to the recovery strategy.
This is a linear process vs a factorial process, if we consider the per-
mutation of the edges to recover which provides the global optimal
choice. Let us assume that the order of the sequence

(

Pi
m,k1

(G), . . . , Pi
m,kδi

(G)

)

,

corresponds to one of the two described strategies. Denote by
Ri

m,S(G) and Ri
m,W(G) to the local resilience in node i regarding

the measure m when smart and worse-case recovering have been
applied, respectively, according to Eq. (5).
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FIG. 1. Description of the values Pi
m,kj

(G), for permutation σ =
(

k1, . . . , kδi

)

, and their rescaling.

Let us present the first results on two classes of graphs. To carry
out the study, the networks have been subjected to a single point
failure, understood as the elimination of the adjacent edges of the
vertex and the edges are retrieved one by one, from among all the
possible edges to recover. The compared networks are denoted by P,
which is a path on 14 vertices with a 5-complete graph in one of the
end-nodes, and by S, which is a star on 7 vertices with a 3-complete
graph in each end-node (see Fig. 2). Observe that both graphs have
the same number of nodes and the same number of links, that is, 19
nodes and 24 links.

Figure 3 shows the relationship between a local graph parame-
ter and the local resilience value on the vertices of the two presented
graphs, regarding the efficiency measure, that is, Ri

E,σ (G). The con-
sidered local parameters are the degree, the betweenness centrality,27

the clustering coefficient,28 and the eigenvector centrality.29 Let i ∈ V
be any vertex of a graph G on n vertices. The betweenness centrality
is the sum of the fraction of all-pairs shortest paths that pass through
node i and it is defined as

bi =
1

n(n − 1)

∑

j6=k∈V

sjk(i)

sjk

,

where sjk(i) represents the number of shortest paths from j to k
through i and sjk is the number of shortest paths between vertices
j and k. The clustering coefficient is the fraction of possible triangles
through that node that exists, that is,

ci =
T(i)

δi(δi − 1)
,

where T(i) is the number of triangles through node i and δi is its
degree. The eigenvector centrality computes the centrality for a node
based on the centrality of its neighbors and it is computed as follows:

xi =
1

λ

∑

j

aij xk,

with A = (aij) being the adjacency matrix of the graph and λ 6= 0 is
a constant, in a matrix form is λx = xA.

Both strategies, smart and worst-case recovery, have been stud-
ied and they are represented in the same panel by blue and red dots,
respectively (see Fig. 3). That is, for each vertex i ∈ V, the values

Ri
E,S(G) and Ri

E,W(G) have been computed, according to Eq. (6), and
represented together with the corresponding classic local parameter.

As a first trivial observation for both graphs, the values for the
local resilience under the smart recovering process are greater than
the values for the local resilience under the worst-case recovering
process in general, as expected. Local parameters and local resilience
have been computed for all nodes in both graphs, which have a total
number of 19 nodes, and they have grouped themselves naturally
according to their resilience value in each case, such that in S, we
find three clusters, where some values are equal in the smart and
the worst-case recovery strategy, whereas nodes in P have a more
heterogeneous behavior.

Although both graphs have the same number of nodes and
the same number of links, if we compare them, the local resilience
of their nodes presents very different behavior with respect to the
other indices, see Fig. 3. For instance, focus on the degree param-
eter and the smart recovering strategy, if we compare the nodes
of high degree (degree 5 in P and degree 6 in S), we find a much
higher local resilience value in P than in S (in this case, observe
that the red dot is on the blue dot in the degree panel of S),
despite they differ just in one unity. Similar considerations can be
described for the eigenvector centrality. Respecting the between-
ness centrality, in general, observe that in both graphs and for
both strategies, greater betweenness centrality values correspond to
lower local resilience values, but there are some exceptions in P, as
can it be observed in Fig. 3. For the clustering coefficient and for
both recovering process, it seems that high values of this parameter
correspond to also high values for local resilience, but this behav-
ior is not monotonic, observe that there are some exceptions in
P (see Fig. 3) applying the worst-case recovering strategy. There-
fore, the local resilience parameter allows to distinguish between two
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FIG. 2. Graph P (on the left) and graph S (on the right).

networks that have exactly the same number of nodes and links,
thanks to the differences in the development of this measure in each
of them.

Other assessments can be done with the goal to compare two
relevant nodes in the networks. For example, observe that the high-
est degree node in network P has a higher value of local resilience
than the highest degree node in network S. In this case, taking into
account that the efficiency is the chosen performance function to
define the resilience, can be influenced by the degree (the value of
the local structural parameter) of the neighbors of the highest degree
nodes in each network. Observe that in network P the neighbors of
the highest degree node have higher degree than the neighbors of the
highest degree node in network S. Hence, the trend of local resilience
with local structural properties also depends on the local structural
properties.

III. COMPUTATIONAL EXPERIMENTS: RESULTS AND

DISCUSSION

In this section, some computational experiments on synthetic
and real networks are presented in order to compare the local
resilience measure introduced in the previous section with some
classic local parameters, such as the degree, the betweenness cen-
trality, the clustering coefficient, and the eigenvector centrality. In
all the cases, the input data have been the network, that is, the set
of nodes and links that compose them. Local resilience values have
been computed for all nodes of the networks and for the both men-
tioned strategies, smart and worst-case recovery. Results are shown
in different figures.

A. Synthetic networks

Three classic random families of synthetic networks have been
selected for testing the relationships between the new local resilience
measure with the mentioned structural local parameters. For more
interest in the comparative, the three considered networks have the
same number of nodes (500) and almost the same number of links
(2500 aprox.).

First, we consider Erdős–Rényi random graphs,30 denoted by
ER(n, p), which are unweighted and undirected graphs of n ∈ N

nodes such that each possible link between two nodes exists in

ER(n, p) with prefixed probability p ∈ [0, 1], i.e., given a pair of
nodes i, j in ER(n, p), then there exists the link between i and j with
probability p. Since the linking strategy in this mode is indepen-
dent of the nature of the nodes, then ER(n, p) is a homogeneous
network and therefore the local properties of each node are quite
uniform.31 However, left panels in Fig. 4 show that local resilience
is not correlated with degree, betweenness, clustering coefficient,
and eigenvector centrality, in general. The nodes with high local
resilience are nodes with low betweenness or low clustering coef-
ficient [see Figs. 4(d) and 4(g)], meanwhile for the degree and
the eigenvector centrality are nodes with an intermediate value
[see Figs. 4(a) and 4(j)], as can be observed by plotting the relation-
ships between the local resilience and the degree, the betweenness
centrality, clustering coefficient, and eigenvector centrality of each
node for an Erdős–Rényi random graph ER(n, p) of 500 nodes, 2478
links, and linking probability p = 0.02.

Second, we study now Watts–Strogatz random networks.28

Remember that a Watts–Strogatz random network WS(n, k, p) is an
undirected and unweighted network of n ∈ N nodes constructed by
using a rewiring process, such that we start from a regular ring lat-
tice of n nodes each one connected to k ≤ n neighbors and each
link is rewired with probability p ∈ [0, 1]. Note that random net-
works exhibit small-world properties, such as short average path
lengths and high clustering.28 Central panels in Fig. 4 show that
the local resilience measure is correlated with the betweenness cen-
trality and clustering coefficient [see Figs. 4(e) and 4(h)], but not
with the degree and eigenvector centrality [see Figs. 4(b) and 4(k)],
where the nodes with high local resilience are those with intermedi-
ate values for such structural parameters. In these panels, it is plotted
the local resilience and all the structural parameters considered for
a Watts–Strogatz random network WS(n, k, p) of 500 nodes, 2500
links, starting regularity k = 10, and rewiring probability p = 0.25,
being clear that local resilience is far from being correlated with the
considered structural measures.

Finally, Barabási–Albert BA(n, m) networks are analyzed.
These are random undirected and unweighted networks of n ∈ N

nodes constructed by using a growing process that starts with a fixed
network of m ∈ N nodes and at each time step a new node is added
by linking to m ∈ N existing nodes proportionally to its degree
(preferential attachment).32 It is well-known that Barabasi–Albert
networks are heterogeneous and present power-law (or scale-free)
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FIG. 3. Local structural parameters vs local resilience in the graphs P [panels (a)–(d)] and S [panels (e)–(h)].

degree distribution, so the structural role of each node in such net-
works are quite variable.32 Right panels in Fig. 4 show that local
resilience is strongly inversely correlated with most of the structural
local parameters considered for a Barabási–Albert graph BAn,m of
500 nodes, 2475 links, and m = 5. Observe that, in general, high
values of the local resilience correspond to nodes with low values
of the structural parameters, but there are also some exceptions. For
instance, there are vertices with an intermediate degree value with a
high resilience or there are vertices with high clustering coefficient
with an intermediate resilience [see Figs. 4(c) and 4(i)].

It is remarkable the fact that it seems that there is some cor-
relation between the (highest) value of local resilience with some
(higher) structural local parameters and therefore local resilience
strongly depends on the network structure. This fact suggests that
there is a clear parallelism between the correlations observed above
and the sound results obtained for the robustness and stability
for bistable22 and multistable23 dynamics in a series of relevant
papers.

The local resilience parameter can be also used for compar-
ing the networks between them, when it is appropriated. The three
generated networks in this computational experiment have the
same number of nodes (500 nodes) and, almost, the same number
of links (2500 aprox.), which suggests to mention some compar-
isons. In general, for all the classic local parameters and for both
recovery strategies, the values that achieve the local resilience are
higher in the Watts–Strogatz network than in the Erdős–Rényi
or Barabási–Albert networks. This fact could be related to the
small-world properties of the network or maybe to other some

underlying structural properties. Attending to the degree of
the nodes, vertices with an intermediate degree in Erdős–Rényi
and Watts–Strogatz network are those that attain higher local
resilience values, in front of the vertices of minimum degree in
Barabási–Albert network, which are those that achieve higher local
resilience values, which can be relationed with the heterogeneity of
nodes in Barabási–Albert network, vs a more homogeneity of nodes
in Erdős–Rényi and Watts–Strogatz networks. Another outstanding
fact is the low correlations between the structural parameters and the
local resilience, where we can find it, slightly, only in the between-
ness centrality and clustering coefficient of the Watts–Strogatz
network.

In summary, this local resilience definition is a new quantitative
structural measure which is not usually correlated to the considered
classical measures and permits to establish interesting comparisons
between networks.

B. Real networks

Local resiliences, understood as the local resilience under the
smart and worst-case recovery strategies, are compared with the
structural parameters of previous sections.

Results are presented for a couple of real technological net-
works: on the one hand, public transportation system (metro) of
Madrid (Spain)33,34 that can be modeled as a complex network of
234 nodes representing each metro station and each link is a direct
connection between such stations and, on the other hand, the USA
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FIG. 4. Local structural parameters vs local resilience in a Erdős–Rényi network of 500 nodes, 2478 links and linking probability p = 0.02 [panels (a), (d), (g), and (j)], in a
Watts–Strogatz network of 500 nodes, 2500 links, starting regularity k = 10 and rewiring probability p = 0.25 [panels (b), (e), (h), and (k)] and in a Barabási–Albert network
of 500 nodes, 2475 links, and m = 5 [panels (c), (f), (i), and (l)].
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FIG. 5. Local structural parameters vs local resilience in the Madrid metro of 234
nodes [panels (a), (c), (e), and (g)] and in the USA power grid of 4941 nodes
[panels (b), (d), (f), and (h)].

power grid network28,34 which is an undirected and unweighted net-
work representing the Western States Power Grid of the United
States, such that each of its 4941 nodes represent one transform or
power relay point and two nodes are connected if a power line runs
between them.

As can be observed in Fig. 5, the local resilience in relation to
the structural parameters considered (degree, betweenness central-
ity, clustering coefficient, and eigenvector centrality) reaches slightly
higher values for the USA power grid network compared to those
obtained for the Madrid subway network, both for the smart and
worst-case recovering, despite the fact that the number of nodes of
the systems is very different, being the U.S. power grid a more het-
erogeneous network. For both networks, we observe that the values
of the local resilience are more clustered in the cases of the degree
and the clustering coefficient [see Figs. 5(a), 5(b), 5(e), and 5(f)],
than in the other parameters [see Figs. 5(c), 5(d), 5(g), and 5(h)].

The best local resilience values are obtained, in general, and
for all the parameters, under the smart recovering process, which
is a expected behavior. However, for small values of the between-
ness centrality parameter, we can observe how there are vertices, in
both networks, which achieve high local resilience values despite fol-
lowing the worst-case recovering process [see Figs. 5(c) and 5(d)],
which can indicate that for these nodes there is not a great differ-
ence between the smart or the worst-case recovery. Regarding the
degree, we notice that the vertices of higher local resilience value, in
general, are those with an intermediate degree, and not those with
maximum or minimum degree [see Figs. 5(a) and 5(b)]. For the clus-
tering coefficient and the eigenvector centrality, most vertices with
low values of these parameters correspond to high values of the local
resilience, but it is remarkable that there are also vertices with high
values for clustering coefficient and the eigenvector centrality which
present high values of the local resilience, or even the highest value
of the local resilience in the case of the Madrid subway [see Figs. 5(e)
and 5(g)].

IV. CONCLUSIONS

This study provides a new theoretical and mathematical setting
for the concept of resilience in complex networks. A quantitative
definition of resilience located in a node of a network with respect
to a generic measure has been introduced. The efficiency has been
the selected local performance function for this work, but the local
resilience definition can be adapted to other measures of interest,
depending of our study goal, which makes it a flexible and malleable
definition. This local concept permits to study the recovery capacity
of a network after a disturbance in a particular node. The disruption
is based on removing all the edges incident to such vertex and the
recovery process on adding an edge in each period of time according
to a strategy. The assumption of adding just an edge in each instant
or period of time can be easily relaxed, as well as other consider-
ations. These other variants can be the object of study for futures
works.

Two recovering strategies have been considered: the one that
provides the highest value of local resilience in each step of the
recovery process (smart recovering) and the one that produces the
smallest value of local resilience in each step of the recovery pro-
cess (worst-case recovering). Four local and classic parameters have
been compared with this new definition of local resilience: degree,
betweenness centrality, clustering coefficient, and eigenvector cen-
trality. Several computational experiments have been presented in
graphs and synthetic networks, as well as in two real networks, from
which general and interesting conclusions can been extracted.
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From the results obtained on the two considered graphs (P and
S), we observe that the local resilience parameter can be an interest-
ing tool to compare networks with exactly the same number of nodes
or/and links, due to the different local resilience behavior observed.
This fact reflects the importance of the structural properties under-
lying on graphs, and not only general parameters as the number of
nodes or links.

The computations carried out in this work on the synthetic
networks show that this new parameter is not directly correlated
to other classic local indices, as could be expected in some cases.
The values of the local resilience in the three considered families,
Erdős–Rényi, Barabási–Albert and Watts–Strogatz networks, have
different behavior vs the classic local parameters, and there is no cor-
relation in most of the comparisons. One interesting question could
be what structural properties of these networks produces correlation
between the parameters in some families but not in others, despite
the heterogeneity on its nodes in some cases.

Finally, the experiments on real networks have been on the
Madrid subway network and the USA power grid network. These
are networks of different nature, with different number of nodes
and links, but some interesting observations can be outstanding.
For instance, in both networks, the nodes with highest values of the
local resilience are those with an intermediate degree in the net-
work and not those with an extremal degree. This fact highlights
that these networks share some structural properties which pro-
duces that the best nodes with respect to this new local resilience
parameter are not the nodes with maximum or minimum degree.
Regarding the classic local parameters related to the importance or
relevance of a node in the network, as betweenness centrality, clus-
tering coefficient and eigenvector centrality, the general behavior is
that the least relevant nodes, which have a low value of these param-
eters, are those with higher local resilience values, however, there
are other numerous nodes which are the most important in the net-
work, with a high value of these parameters, and also have high levels
of local resilience. Hence, low values of the parameters are not cor-
related with low values of the resilience and neither high values of
the parameters are correlated with high values of the resilience. This
fact suggests that the resilience can be used to distinguish between
nodes which have similar values for some classic local parameter,
for instance, betweenness centrality (or any other). While for the
betweenness centrality all of them can seem similar, maybe the node
with the highest local resilience value between them can be most rel-
evant in the network than the others. Hence, the local resilience can
be an interesting differential tool.

Therefore, the local resilience parameter introduced in this
paper is a clear new tool to measure the resilience of a network from
a local sight. This definition is very general, which can be applied to
any performance measure on a discrete context, by allowing to com-
pare the resilience of different networks between them or to compare
a same system from different points of view.
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