Torricelli, DiegoCortés, CamiloLete, NereaBertelsen, AlvaroGonzález-Vargas, José E.del-Ama, Antonio J.Dimbwadyo, IrisMoreno, Juan C.Florez, JulianPons, José L.2024-01-042024-01-042018-04-27Torricelli D, Cortés C, Lete N, Bertelsen Á, Gonzalez-Vargas JE, Del-Ama AJ, Dimbwadyo I, Moreno JC, Florez J, Pons JL. A Subject-Specific Kinematic Model to Predict Human Motion in Exoskeleton-Assisted Gait. Front Neurorobot. 2018 Apr 27;12:181662-5218https://hdl.handle.net/10115/28158Esta publicación ha sido realizada en los proyectos Europeos de investigación EU FP7 BioMot (Smart Wearable Robots with Bioinspired Sensory-Motor Skills), Ref.: 611695, y el proyecto EU H2020 EUROBENCH European Robotic framework for bipedal locomotion benchmarking, Ref.: 779963. Colaboración entre instituciones de México y España. CONTRIBUCIÓN (según taxonomía CReDIT): Conpcetualization, Methodology, Project administration, Resources, Supervision, Writting: review&editing. -------------------------------------- Indicios de calidad: - A nivel del medio de difusión Revista con revisión por pares doble ciego indexada en JCR y Scupus, en el segundo cuartil (Q2) primer tercil (T1) en las categorías de Computer Science, Artificial Intelligence, Robótica y Neurociencias con factor de impacto 3.000 en el año de publicación del artículo (2018) - A nivel de aportación. El artículo ha tenido mucho impacto en las principales redes de interacción científica: Mendeley (138 accesos) y ResearchGate (2.227 accesos). Los índices de impacto son los siguientes: 25 citas en Scopus situándose en el percentil 69 de artículos similares (Scopus), 28 en WoS y 34 en GoogleScholar. Los índices de citación normalizadas son los siguientes: 0.94 (FWCI, Scoups) y 1.03 (FCR, Dimensions).The relative motion between human and exoskeleton is a crucial factor that has remarkable consequences on the efficiency, reliability and safety of human-robot interaction. Unfortunately, its quantitative assessment has been largely overlooked in the literature. Here, we present a methodology that allows predicting the motion of the human joints from the knowledge of the angular motion of the exoskeleton frame. Our method combines a subject-specific skeletal model with a kinematic model of a lower limb exoskeleton (H2, Technaid), imposing specific kinematic constraints between them. To calibrate the model and validate its ability to predict the relative motion in a subject-specific way, we performed experiments on seven healthy subjects during treadmill walking tasks. We demonstrate a prediction accuracy lower than 3.5° globally, and around 1.5° at the hip level, which represent an improvement up to 66% compared to the traditional approach assuming no relative motion between the user and the exoskeletonengAtribución 4.0 Internacionalhttp://creativecommons.org/licenses/by/4.0/wearable robotbenchmarkingwalkingrehabilitationlower limbskeletal modelingA Subject-Specific Kinematic Model to Predict Human Motion in Exoskeleton-Assisted Gaitinfo:eu-repo/semantics/article10.3389/fnbot.2018.00018info:eu-repo/semantics/openAccess