Santesteban, IgorOtaduy, Miguel A.Casas, Dan2020-04-172020-04-172020-04-17http://hdl.handle.net/10115/16770"This is the peer reviewed version of the following article: [FULL CITE], which has been published in final form at [Link to final article using the DOI]. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Use of Self-Archived Versions."This paper presents a learning-based clothing animation method for highly efficient virtual try-on simulation. Given a garment, we preprocess a rich database of physically-based dressed character simulations, for multiple body shapes and animations. Then, using this database, we train a learning-based model of cloth drape and wrinkles, as a function of body shape and dynamics. We propose a model that separates global garment fit, due to body shape, from local garment wrinkles, due to both pose dynamics and body shape. We use a recurrent neural network to regress garment wrinkles, and we achieve highly plausible nonlinear effects, in contrast to the blending artifacts suffered by previous methods. At runtime, dynamic virtual try-on animations are produced in just a few milliseconds for garments with thousands of triangles. We show qualitative and quantitative analysis of results.engAtribución-NoComercial-CompartirIgual 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc-sa/4.0/Computing methodologiesPhysical simulationNeural networksInformáticaLearning-Based Animation of Clothing for Virtual Try-Oninfo:eu-repo/semantics/preprintinfo:eu-repo/semantics/openAccess1203 Ciencia de Los Ordenadores