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Abstract

Every day millions of passengers travel, being border crossings one of their most

common activities. At these points it is extremely important that the security

is completely guaranteed. Nevertheless, the maintenance of the proper secu-

rity levels is a very demanding issue. This has promoted the development of

systems able to provide support to the border authorities automatising some of

their tasks. Thus, Automated Border Control (ABC) systems have become a key

tool. These systems increase the flow of travellers as they can achieve fast evalua-

tions of individuals through their machine-readable travel documents. However,

this has motivated the appearance of attacks that try to avoid the identity de-

tection of individuals by these systems. Presentation Attack Detection (PAD)

algorithms have arisen to mitigate such a problem. This paper presents the On-

the-Fly Presentation Attack Detection (FlyPAD) framework that implements a

set of dynamic PAD techniques. It allows detecting multiple attack types while

the traveller is approaching to the ABC system, instead of being static in front

of cameras. Several experiments have been carried out, both in laboratory and

in real environments, obtaining promising results.

Keywords: Border access control, Dynamic detection, Presentation attack

detection, Face recognition, Face anti-spoofing
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1. Introduction

Every day millions of border crossings happen all over the world. It was

estimated that around 3.5 million people daily crossed internal borders between

Schengen countries in 2017 [1]. In the case of the United States, the number

of border crossings in the same year was roughly 400 million [2], while in the5

United Kingdom the quantity of 314 million [3] was reached in 2016.

For all these border crossings, security agents have to determine as fast as

possible the following: who may or may not enter the country according to

immigration policies or national security aspects, whether a traveller is in a

watch-list of suspects, update the corresponding databases, or even in some10

cases, stamp the travellers passport. As a whole, all these operations become

a time-consuming task. Thus, it leads to automatising them to make easier

the work of border agents, speeding up the transit of people and increasing the

traveller comfort.

In particular, in the last years the so-called Automated Border Control15

(ABC) systems [4] have emerged to assist the border authorities by automating

(totally or at least partially) the process. Thus, ABC systems have currently

spread to all kinds of borders.

These systems allow increasing the flow of travellers through a border, while

keeping control on security issues. They rely on machine-readable travel docu-20

ments, such as passports, visas, Id cards, or even frequent traveller cards. These

documents contain a chip with information such as the travellers personal data,

and some biometric traits (e.g. face, fingerprints and iris).

One task performed by the ABC systems is the biometric identification of the

traveller. It is usually performed comparing the captured face of the subject in25

static frontal position with the face image stored in the passport chip. For this

configuration (subject stated in front of the camera), systems have included

different Presentation Attack Detection (PAD) algorithms (see, for instance,

[5]). This has incremented their capability of detecting diverse types of attacks

like masks, printed photos or screen videos. In any case, most responsibility of30
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attack detection relies on border guard that supervises the system.

New trends in this technology is the deployment of On-the-Fly ABC sys-

tems [6]. This approach is much more comfortable for the traveller because all

the process can be done while passenger is walking. This case means that the

face processing algorithms have to run as soon as the face is detected, without35

requiring a static pose nor collaboration of the user. In the experimental situa-

tions in which On-the-Fly ABC systems have been deployed, the focus has been

placed on facial verification rates and no report has been found showing PAD

results.

The present paper introduces the On-the-Fly Presentation Attack Detection40

(FlyPAD) framework that implements dynamic PAD algorithms for face recog-

nition in five different types of attacks: printed photos, paper masks, paper

masks without eyes, screen videos, and 3D masks.

Multiple experiments in a controlled environment (i.e. in a laboratory) and

in a real border scenario have been achieved to illustrate the viability of the45

system. These experiments are focused on evaluating the system performance

and the PAD capabilities of the system in static and dynamic situations.

The remainder of this paper is organised as follows. Section 2 introduces

the foundations of the proposal. Section 3 presents the developed framework

detailing the architecture, while Section 4 is focused on the image database50

generated for the attack detection. Section 5 addresses the different experiments

focusing on the obtained results. Finally, Section 6 concludes and provides the

future guidelines.

2. Background

This section describes the foundations of the FlyPAD framework. Firstly, it55

addresses the ABC systems detailing their configurations, possible designs and

implantation in real environments. Then, presentation attacks are introduced,

establishing a basic classification and describing the most typical instruments

used to achieve them. Finally, the PAD systems are presented, illustrating
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how they work, evaluating the considered technologies and their strengths and60

weaknesses.

2.1. ABC systems

An ABC system is an automated system with multiple sensors which per-

forms three main specific tasks according to the European Border and Coast

Guard Agency (Frontex) [7]. First, it accepts and reads the passengers travel65

document (e.g. passport or visa) or token with data stored in a chip, and au-

thenticates its validity. Second, it checks that the traveller is the owner of the

document, which means it has to acquire some real-time biometric data of the

traveller (mainly face and fingerprints) and compares them with those stored

in the chip of the document. Third, it submits a query to the border control70

databases to check whether the traveller has right to cross the border according

to administrative or legal rules.

In the case of European border crossings where ABC systems are deployed,

it is required checking subject identification against two lists: RTP (Register

Traveller Programme) and EES (Entry/Exit System) [8]. The identity of trav-75

ellers and their suitability to cross the border is verified in the RTP checking

according to the information stored in their documentation. Once the travellers

are identified, their data are registered. At border crossing time, biometric

match between registered information and data captured is achieved by EES.

Depending on the devices in which the RTP and EES processes are per-80

formed, there are different ABC systems topologies: One Step Process and Two

Step Process [9]. In the One Step Process topology, RTP and EES are merging

into a single process in which the identification of travellers is carried out at

the same time as travellers cross the border. Devices for this type of topology

are usually mantrap e-gates [4], that do not allow crossing until identification85

has been correctly carried out. In the Two Step Process topology, RTP and

ESS processes are well differentiated. Travellers are registered and then, their

biometric information is matched before allowing crossing. Integrated or Segre-

gated Two-Step ABC can be considered attending whether RTP and EES are

4



achieved through one or two devices.90

Regarding the implantation of the ABC systems and their usability, it is

important to mention that almost all airports receiving travellers from non-

Schengen countries use them (a complete map of airports with ABC is presented

in [10]). However, ABC-equipped seaports are not so frequent.

In the case of the configurations of ABC systems, they can have several95

physical configurations [11]. The most typical use of electronic gates (e-gates)

[12]. These devices regulate travellers flow through the border with the use of

biometric sensors (e.g. cameras for face recognition [9] and fingerprint readers

[13]), travel document readers (e.g. scanners [14] and radio frequency contactless

chip readers [15]), as well as physical barriers that let or not the traveller to cross100

the e-gate [16].

Delving into the design of ABC systems, their capability to recover from

problematic situations (i.e. resilience) and to resist against external assaults (i.e.

robustness) are their principal security requirements. Most typical attacks are

focused on the biometric system. These attacks are called presentation attacks,105

which consist of an attacker presenting to sensors forged biometric features of

another subject for obtaining permission to cross the border. For this reason,

ABC systems include some kind of PAD and anti-spoofing module in the process

of biometric recognition.

In the case of FlyPAD, it has been preliminary tested in laboratory simu-110

lating a border crossing. Then, it has been included into an ABC system with

e-gates in a real border scenario. Both perspectives have shown the viability of

the prototype. Nevertheless, this framework has as a main purpose the dynamic

PAD. This leads the system to fit better with the Segregated Two-Step topol-

ogy as the system performs the facial verification having previously registered115

the traveller information. It is also interesting to remark that the detection of

manipulated travel documents is out of the scope of FlyPAD.
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2.2. Presentation attacks

A presentation attack could be defined as the impersonation of an individual

(i.e. the victim) who possesses the desired authorisation. There are several120

techniques to carry out these type of attacks, but all of them can be organised

into biological-based attacks and document-based attacks [17]. The former are

mainly focused on three main elements: face [18], fingerprint [19] and eyeprint

(i.e. iris recognition) [20]. The latter usually considers the documents used by

travellers to identify them (e.g. passport and other travel documents) [21]. It is125

typical that these attacks can tackle more than one element (e.g. the face and

the fingerprint, or the face in the picture of the passport [22]).

Delving into face presentation attacks, several artefacts or Presentation At-

tack Instruments (PAIs) have been identified in the literature [23]. For instance,

the so-called photo attacks consist of presenting a face picture to the system in-130

stead of the face itself. This picture can be a standard photograph printed in

paper or it can be shown with the help of electronic devices (laptop, tablet,

or mobile phone). These devices can enhance the attack showing a video in

front of the sensor [24]. This sensor usually only takes into account the normal

movement of the head or specific features, such as lips (when reading out a sen-135

tence) or eyes (blinking, reaction to light), which makes more difficult to detect

the attack. This issue can be addressed detecting the presence of some strange

elements such as hands in the acquired image or the edges of the picture. An-

other well-known type of attack makes use of face masks [25]. The easiest case

is printing a face picture into a mask which is worn by the attacker. The eyes140

area is usually cut to let the eyes of attackers be visible to prevent a possible

eye blinking detection module [26]. On the other hand, the advents of cheap 3D

printers have paved the way to using 3D realistic masks which mimic the face of

other individuals [27]. There are several commercial solutions for creating these

masks with a handful of normal photographs (frontal and two profiles). Also,145

in this point it is important to consider the use of make-up, disguises, wigs,

fake beards or moustaches, and even plastic surgery to carry out this kind of

presentation attacks [28].
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In the case of the FlyPAD framework, it is focused on face presentation

attacks. It considers the following types of attacks: printed photos, paper masks,150

paper masks without eyes, screen videos and 3D masks. Thus, the system covers

most of the spectrum of the related literature, making it very robust to face

presentation attacks.

2.3. Presentation attacks detection

Biometric systems, including those based in face recognition, usually com-155

prise several modules devoted to specific functions, such as data capture (sen-

sor), feature extraction, data storage, score comparison and decision [29]. De-

pending on which system module is hacked, several vulnerabilities can be iden-

tified. In particular, presentation attacks take place at the front end of the

system (i.e. at the sensor level). Thus, attackers present to the system spoofed160

biometric traits (this is, fake or forged). This kind of attacks are simple to

commit as they are external to the system, in contrast to others which need the

thorough knowledge of how the system works (e.g. to hack the feature extrac-

tor, the database, the classification or the decision modules). This issue makes

presentation attacks the most likely form of attack for a face recognition system165

[30].

Concisely, PAD algorithms can be classified into hardware-based or software-

based [5]. The hardware-based (or sensor-level) methods rely on intrinsic prop-

erties of the body. Notice that, in some cases, a specific or non-conventional

sensor is needed to acquire these features. Instances of these properties are:170

facial textures, electrical resistance, temperature, sweat, colour, skin reflectance

for wavelengths other than visible and 3D shape. Some of these properties are

involuntary as they are controlled by the nervous system, in particular pulse,

ocular saccades, and breathing. In the case of the anti-spoofing systems, they

produce a stimulus and try to detect body reactions (challenge-response meth-175

ods) [31]. A common instance of these methods consists of requesting the user

to follow a light with the head, or reading out a sentence. Involuntary reac-

tions can be searched, such as eye blinking or pupil constriction due to dazzling
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light [32]. Although these tasks can be performed by software, they can be also

carried out by dedicated hardware. Finally, the use of multimodal strategies180

(same trait, multiple sensors) or multibiometrics (multiple traits, same sensor)

can increase the robustness of the system against spoofing attacks.

In contrast, software-based (or feature-based) methods are applied by a mod-

ule located just after the sensor, so they operate over the biometric sample ac-

quired. This provides high accuracy and relatively low cost [5]. Most of these185

methods only rely on static features, this is, on a single image. These latter can

be organised into texture-based static and frequency-based static methods [5].

The first ones can detect the facial features, or even the presence of artefacts due

to low printing quality. The second ones make use of the spectral information

contained in a face image. Both methods can be combined through hybrid ap-190

proaches. Nevertheless, some software-based methods are dynamic in the sense

that they also take into account timing information. For instance, when the

sensor acquires videos instead of snapshots. Thus, some texture-based meth-

ods depend on motion features of the incoming data, such as head movement

tracking, background motion or optical flow [33].195

In the case of FlyPAD, the PAD task relies on hardware-based algorithms.

These algorithms are able to detect distant individuals, indicating possible pre-

sentation attacks while they are in movement (i.e. On-the-Fly). This issue

differs from the related literature on the domain, being one of the main novel-

ties provided by the system.200

3. FlyPAD system architecture

The FlyPAD framework has as a main purpose the dynamic PAD. This

is known as On-the-Fly or On-the-move detection, and it is able to provide

agility in border crossings (see Fig. 1). Therefore, travellers do not need to

pose in front of the sensors to be analysed. Notice that the system can also205

work normally, being able to carry out the PAD task in a static configuration.

FlyPAD considers five different types of attacks (see Fig.2): printed photos,
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Figure 1: Top schematic view of the e-gate, with the enrolment kiosk (left) and the e-gate

(right). Bottom: Face acquisition for static and dynamic capture

paper masks, paper masks without eyes, screen videos and 3D masks.

The current proposal has addressed several challenges that are present in

real borders. Parameters such as lighting, pose or camera distance are extremely210

controlled at current PAD systems for static devices, but it is not easy to control

them in a dynamic scenario. This leads to developing techniques able to solve

these issues. These techniques have been included in the different components

of the architecture of the system.

The architecture of the FlyPAD framework comprises four modules: track-215

ing, detection, verification, and PAD. They are complemented by the capture

device, the models repository and the tracking token (see Fig. 3).

The tracking module is the underlying element. It monitors the movement

of travellers in their approach to the e-gate. This module locates travellers using

the detection module, validates their identity through the verification module220

and detects facial biometric attacks with the PAD module. Thus, the system

must decide with all the captured tracking information whether travellers can

cross the e-gate. These modules are detailed in next sections.
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Figure 2: Leftmost image: example picture. Left side, upper row: normal image, printed

image, paper mask with eyes. Left side, lower row: paper mask with eyes holes, screen video

and 3D mask.

Figure 3: Overview of the architecture of the system.

3.1. Tracking module

The tracking module works in consonance with the rest of modules exchang-225

ing information with them. Thus, it receives 25 fps (frames per second) from

the capture device. Each frame consists of a RGB image with 1, 920 × 1, 080

pixel resolution. Only one of the five captured frames is sent to be processed

by the detection module. If one face is detected, the detection module returns

the region where the face was located and estimates the distance to the capture230

device. Each face is evaluated by the verification module to authenticate the
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traveller and by the PAD module to detect possible attacks.

Considering that border crossing is individually performed, only one subject

at a time should be presented in the corridor approaching the e-gate. When a

face is located for the first time, the tracking module generates a tracking token235

associated with the subject. This tracking token is active until the user crosses

the border and stores the identity information through all the process. Each

time a new face is detected, it is compared with the active tracking token to

decide if it corresponds to the current identity. In case of a positive matching

the tracking token information is updated. In case of five consecutive negative240

matching or acquisition failure, token is discarded and border crossing is not

allowed, redirecting the subject to a static e-gate.

In addition to the identity information, the tracking token stores other track-

ing information such as number of acquisition failures, the verification module

results or the PAD module results. When travellers are in front of the ABC245

system, the tracking token information is used to decide if they can cross the

border. If the tracking token contains more than a certain amount of consec-

utive authenticated tracking frames (i.e. bona fide presentations [5]), then the

system allows the traveller to cross. Otherwise, if anomalous tracking frames are

detected by the PAD module, the system considers the traveller as an attacker.250

Then, a manual verification by the security agents is required.

3.2. Detection module

This module has as a main purpose to search faces on every received frames.

It uses the well-known Viola-Jones algorithm [34] to perform this task. When a

face is located, this module considers the camera resolution and the size of the255

detected region to estimate the distance of the individual to the capture device.

Three different distance ranges are considered by the module to optimise

the detection performance (see Table 1). The first range considers more than

2 meters to the capture device. The second range considers more than 1 meter

but less than 2 meters to the capture device. The third range contemplates260

distances less than 1 meter to the capture device.
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Range Image Size Distance

Out of Range 50× 50 px –

Range-1 ≥ 50× 50 px – < 150× 150 px ≥ 2m

Range-2 ≥ 150× 150 px – < 250× 250 px < 2m ≥ 1m

Range-3 ≥ 250× 250 px < 1m

Table 1: Region faces size for each selected range.

Regions with less than 50×50 pixel resolution are discarded, as they are too

far away to be verified. Regions between 50× 50 and 150× 150 pixel resolution

are considered from the first distance range. Regions between 150 × 150 and

250 × 250 pixel resolution are classified into the second distance range, and265

regions larger than 250 × 250 pixel resolution from the third distance range.

This information is stored in the tracking token.

3.3. Verification module

This module has been designed for the Segregated Two-Step topology. This

means that the RTP process has been previously performed on another device270

and the information of the travellers is already recorded in the system. More-

over, the EES process is carried out in the e-gate, where the registered biometric

information of a traveller and the information captured in situ are compared

[7].

To confirm that the captured identity is the same as the registered one,275

facial verification between them is required. Cognitec facial recognition is used

by this module for the face verification task [35]. Congnitec has been specialised

on travel documents and its algorithm is in the top-ten performance ranking in

NIST FRVT 1:1 test with visa images [36].

In addition to face verification, several security checks in protected databases280

and systems as VIS (Visa Information System) [37] or SIS (Schengen Informa-

tion System) [38] are included in this module.
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3.4. PAD module

The PAD module decides if the detected face is a presentation attack or a

bona fide, returning this information to the tracking module.285

The detection task is carried out in two stages (see Fig. 3). In the first

stage, the appropriate classifiers stored into the models repository module are

used to evaluate the capture. This capture is scaled to 100 × 100 pixel resolu-

tion, converted to grayscale and the histograms of the Local Binary Patterns

(LBP) [39] is calculated to get a feature vector. Five classifiers are selected (one290

per attack type) according to the distance of the detection from the device and

the predefined three distances ranges. This task is achieved by the model selec-

tor component. In the second stage, the selected classifiers return the attack

probability for the trained PAI. Finally, calculating the average of the response

for each classifier it is possible to obtain the probability for a face to be con-295

sidered a bona fide or an attack. This task requires to select one threshold for

mean probability. This threshold depends on a desired confidence value (i.e.

how many attacks the system is able to accept, or how many times the system

produces unnecessary alarms). In the case of the ABC systems, guidelines from

Frontex have been considered to fix the parameters values [7].300

3.5. Models repository

The models repository module stores the different Machine Learning models

used by the FlyPAD framework to achieve the attack detection tasks. Each

classifier must be a lineal bi-class (attack or bona fide) and implements the

same methods [40].305

The module is organised into three different sets of classifiers according to

specific distance ranges (Range-1, Range-2 or Range-3). In each one, five models

(one per considered PAIs: photo, paper mask, paper mask without eyes, screen

video, or 3D mask) are included. This issue is motivated by the fact that

multiple specialised classifiers present better results than just one for tracking on310

route individuals by modifying their distance to a specific origin [41]). Moreover,
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this decision provides flexibility to the framework, making possible to add new

PAIs without retraining the rest of classifiers.

The models repository module does not need to store any data of the in-

dividuals that have been used for the training of the classifiers. Each model315

only requires the hyper-plane information that allows it to distinguish between

attack or bona fide cases.

4. Test scenarios setup

The FlyPAD framework performance has been tested in two scenarios. The

first called FRAV-ABC-OnTheFly contains videos that have been obtained in320

controlled environment simulating the behaviour of travellers crossing an ABC

system and serves as baseline reference. The second one is called FRAV-ABC-

RB-OnTheFly. It comprises travellers in real border crossing. Both situations

have produced two databases that are detailed in the next sections.

4.1. Baseline controlled scenario database325

The FRAV-ABC-OnTheFly database includes 178 subjects and contains 150

videos. These videos have 25 fps (frames per second) and 1, 920 × 1, 080 pixel

resolution (see Fig.4).

Database is formed by 82 women and 96 men. Ages range between 18

and 67 years with approximately 70 percent of the subjects in an age extent330

between 18 and 28 years. Database subject selection were done according to

the border crossing statistics mimicking its distribution. Database was built

with voluntary students, teachers and university staff. All subjects keep their

privacy and, according to data protection regulation, informed consent were

required from all subjects. The bona fide acquisition was carried out over a335

week and later, after constructing the PAIs of all the subjects, the capture of

the videos of attacks was carried out in two days.

The videos of the database were captured in the laboratory under controlled

illumination conditions. These videos were recorded by using a high resolution

standard camera.340
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Figure 4: Stored information in the FRAV-ABC-OnTheFly database.
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FRAV-ABC-OnTheFly
(178 subjects - 1, 068 videos - 120, 425 faces)

Range Bona fide Photo Video Mask Mask w/e 3D Mask

Range-1 8, 799 8, 525 8, 330 8, 203 8, 329 412

Range-2 8, 837 8, 730 8, 750 8, 335 8, 420 441

Range-3 8, 843 8, 603 8, 603 8, 208 8, 225 435

Table 2: Number of detected faces from the FRAV-ABC-OnTheFly database videos.

FRAV-ABC-RB-OnTheFly
(10 subjects - 60 videos - 7, 200 faces)

Range Bona fide Photo Video Mask Mask w/e 3D Mask

Range-1 440 402 318 350 347 408

Range-2 481 411 421 417 428 423

Range-3 403 383 370 403 408 387

Table 3: Number of detected faces from the FRAV-ABC-RB-OnTheFly database videos.

The subjects were taught to simulate the behaviour of travellers in a crossing

border. Thus, subjects walk starting at 3 meters from the camera until half a

meter. Six different videos following this procedure (one per type of attack and

one for the bona fide) were produced (see Table 2).

Processing videos is necessary to retrieve training images. Faces are detected345

in each video frame through the Viola-Jones algorithm. Each located face is

labelled with the appropriate distance range (i.e. Range-1, Range-2 and Range-

3) according to its size.

Finally, the database information is stored by the three defined ranges. No-

tice that there are different amount of frames with faces because sometimes a350

face could not be detected in all the frames.

4.2. Real border scenario database

The FRAV-ABC-RB-OnTheFly database uses video data captured during

the implemented pilots related to the European Project ABC4EU [42]. The
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Figure 5: Real scenario with the deployed e-kiosk and e-gate devices.

seaport of Algeciras (Spain) was the selected real scenario. This seaport is a355

frontier in the Schengen area, being an arrival and departure point for North-

African travellers.

The real scenario was the traveller reception hall of the seaport. This sce-

nario consists of two devices: one e-kiosk and one e-gate (see Fig. 5). In the

e-kiosk, travellers were able to register showing their documentation. The e-gate360

completed the deployment being in charge of evaluating the registered crossing

users. The e-gate includes the FlyPAD framework to achieve the task.

A total of 10 travellers were selected to implement the selected PAIs. They

were recorded using a camera with 1, 920× 1, 080 pixel resolution. Analogously

to the FRAV-ABC-OnTheFly database, each one of them presents a bona fide365

video and five videos related to the different PAIs at the three different distance

ranges (see Table 3).

Subjects of the real frontier database were provided from EU project ABC4EU,

and were 5 women and 5 men, aged between 22 and 56 years. As in the con-

trolled environment, data protection regulation has to be applied to protect the370

personal information of travellers. Also, informed consent should be signed and

maintained. Elaborated PAIs such as facial 3D masks were manufactured for

these subjects.
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5. Experiments

This section presents a set of experiments achieved to illustrate the viability375

of the FlyPAD framework. First, specific metrics to evaluate the PAD mod-

ule are introduced. Then, Support Vector Machines (SVM) [43] models have

been included to achieve the classification tasks of the models repository mod-

ule. These classifiers have been trained using the 70% of the videos stored in

the FRAV-ABC-OnTheFly database (i.e. laboratory environment). Next, the380

results of the framework with the remaining 30% of videos from these database

are presented. Finally, the performance of the system is evaluated with the

complete FRAV-ABC-RB-OnTheFly database (real environment). In both sit-

uations, results with and without the tracking module activated are included

(i.e. dynamic and static situations).385

5.1. Specific metrics to evaluate PAD systems

Standard metrics related to PAD systems [30, 44] have been used to evaluate

the PAD module of the framework. In particular, the Bona fide Presentation

Classification Error Rate (BPCER) is defined as the ratio of bona fide presen-

tations misclassified as attacks. It measures the proportion of times that users390

present their own biometric data to the system in a collaborative way but a

presentation attack alarm appears. For a particular experimental scenario, let

NBF be the total amount of bona fide presentations and Resi the response of

the PAD system (where i is a specific bona fide presentation, 1 ≤ i ≤ NBF ).

The value of Resi is 0 if the i presentation is correctly classified as a bona fide395

presentation, while it is 1 if it is wrongly classified as a presentation attack. As

the attacks can be very diverse, they can be grouped according to their PAI.

Then, the BPCER for a given PAI species PAIs is computed as follows:

BPCERPAIs =

∑NBF

i=1 Resi
NBF

, (1)

However, if the user tries to deceive the system by providing fake, manip-

ulated or disguised biometric features, this can be considered as spoofing or400
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a presentation attack. In this case, the Attack Presentation Classification Er-

ror Rate (APCER) stands for the ratio of presentation attacks misclassified as

bona fide presentations. This value is key as far as security is concerned, as it

represents how many malicious users can break into the system without being

detected. Let NPAIs be the number of times a specific type of PAI is used to405

attack the system. Again,let Resi be the response of the PAD system (where i

is a specific attack presentation, 1 ≤ i ≤ NPAIs). It takes the value 0 if the i

presentation is wrongly classified as a bona fide presentation, while it is 1 if it

is correctly classified as a presentation attack. Then, APCER for a given PAI

species PAIs is computed as:410

APCERPAIs = 1−
(

1

NPAIs

)NPAIs∑
i=1

(Resi) , (2)

A Detection Error Tradeoff (DET) curve can be computed by plotting APCER

versus BPCER for a range of threshold values of the classifier. As it is usual in

biometrics, it is not possible to minimise both error rates at the same time. The

values of BPCER and APCER are interrelated with the former increasing while

the latter decreases, and vice versa. Both measures describe the performance of415

a PAD system, which will be better as these ratios are as low as possible. One

way to express the performance of a system with a single value is by means of

the so called Average Classification Error Rate (ACER), defined as the mean

of the APCER and BPCER values, for a specific type of PAI. A reliable PAD

system should have an ACER as low as possible. Thus, ACER as well as the420

corresponding BPCER and APCER values are presented in the experimental

results.

5.2. Baseline controlled scenario results

Figure 6 shows the PAD module and tracking module results using the

FRAV-ABC-OnTheFly database. Figure 6b presents the results when process-425

ing the videos using the complete system. That is, taking into account the

tracking and detection failures, and the detected attacks.
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(a) PAD module results per ranges (b) Tracking module accuracy

Figure 6: PAD module and tracking module results using the FRAV-ABC-OnTheFly database

videos.

The system precision depends on the number of consecutive frames detected

that are considered as a valid tracking, and on the percentage of frames con-

sidered as bona fide needed to label the complete tracking as bona fide. For430

instance, the system gets an accuracy of 72.2%, when it is established that a

tracking must have at least 30 consecutive frames, and bona fide tracking is

allowed only if 20% of those frames are bona fide. However, the accuracy is only

60.2%, when it is established that a tracking must have at least 60 consecutive

frames and bona fide tracking is allowed only if 30% of those frames are bona435

fide.

When dealing with ABC systems in which safety prevails, it is convenient

to increase the percentage of frames considered as bona fide. Regarding the

number of frames needed to consider a complete tracking, 15 is a reliable choice

for a distance of 3 meters. Under this configuration, the system achieves an440

accuracy of 71.1%.

Figure 6a presents the system results ignoring the tracking information. Only

the PAD module is considered. To achieve these results, all the faces in the

FRAV-ABC-OnTheFly database have been segmented and the range in which

the face is found has been estimated. In addition, the classifiers of the models445
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Range PAI APCER(%) BPCER(%) ACER(%)

Range-1

Photo 0.180 0.112 0.146

Mask 0.425 0.062 0.243

Mask w/o eyes 0.280 0.152 0.216

Video 0.075 0.385 0.422

3D Mask 0.412 0.022 0.217

All attacks 0.102 0.086 0.094

Range-2

Photo 0.033 0.052 0.042

Mask 0.044 0.085 0.064

Mask w/o eyes 0.098 0.015 0.056

Video 0.093 0.102 0.097

3D Mask 0.091 0.013 0.052

All attacks 0.026 0.019 0.022

Range-3

Photo 0.103 0.052 0.077

Mask 0.345 0.090 0.217

Mask w/o eyes 0.141 0.285 0.213

Video 0.258 0.281 0.269

3D Mask 0.587 0.030 0.308

All attacks 0.098 0.106 0.102

Table 4: PAD module results by range and by PAI using the FRAV-ABC-OnTheFly database

videos.

repository module corresponding to this range have been selected. The DET

curves with the APCER and BPCER errors obtained in each range show that

the Range-2 is the one with the lowest ACER error rate, indicating that the

distance at which errors are best detected is an intermediate distance greater

than 1 meter and lower than 2 meters. Analysing in detail the images of each450

range, although the error rates are low, it can be seen that the images that are

more than 2 meters away have little result for a PAD system based on textures

and that the images too close to the capture device are too noisy and have too
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(a) PAD module results per ranges (b) Tracking module accuracy

Figure 7: PAD module and tracking module results using the FRAV-ABC-RB-OnTheFly

database videos.

many artefacts due to such a close capture.

Table 4 shows the APCER and BPCER rates and the ACER of each of the455

repository classifiers for a given range and with a given PAI. It is confirmed that

the lowest error rates are those of the Range-2. Likewise, it can be seen that

the best detected attack is the photo attack. Video and 3D mask attacks are

the most difficult ones to be detected.

5.3. Real border scenario results460

Figure 7 presents the system results by processing the videos from the FRAV-

ABC-RB-OnTheFly database, which was obtained into the real border crossing

scenario.

Although some conditions such as lighting are not controlled, the results are

similar to those achieved on the FRAV-ABC-OnTheFly database.465

As indicated above, the ABC systems require high level of security. Although

higher precision values are achieved by considering a lower percentage of frames

detected as bona fide, it is convenient to make the system more restrictive since

false negatives (not allow access to a bona fide traveller) can be manually cor-

rected by security agents. As before, a 30% bona fide frames of a tracking of at470

least 15 consecutive frames, is a good choice and guarantees a 76.2% accuracy.
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Range PAI APCER(%) BPCER(%) ACER(%)

Range-1

Photo 0.144 0.100 0.123

Mask 0.416 0.050 0.234

Mask w/o eyes 0.252 0.123 0.188

Video 0.058 0.382 0.220

3D Mask 0.403 0.000 0.202

all attacks 0.092 0.070 0.085

Range-2

Photo 0.024 0.037 0.031

Mask 0.037 0.063 0.050

Mask w/o eyes 0.063 0.024 0.043

Video 0.116 0.074 0.095

3D Mask 0.050 0.000 0.025

all attacks 0.018 0.020 0.016

Range-3

Photo 0.096 0.037 0.067

Mask 0.340 0.100 0.221

Mask w/o eyes 0.126 0.296 0.211

Video 0.290 0.234 0.262

3D Mask 1.209 0.000 0.605

all attacks 0.080 0.078 0.078

Table 5: PAD module results by range and by PAI using the FRAV-ABC-RB-OnTheFly

database videos.

Figure 7a shows the curve with the APCER and BPCER error rates by

range in the real scenario. Although error rates are low in all three ranges,

the range with the lowest detection error is the Range-2. As in the first case,

the loss of quality of images too far away (and too close) from the capture475

device penalises the performance of the PAD module. This is also clear from

the results presented in Table 5 where the performance of each classifier in the

models repository with the segmented faces in the real environment is detailed.

These experiments show the viability of the FlyPAD framework. The sys-
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tem achieves accuracy values very similar to other systems which work in real480

scenarios in static situations [45]. It could be set that the proposal successfully

works both in static and dynamic situations. This issue leads to thinking in

a future implantation of the prototype in cross borders, being able to simplify

the flow of travellers (i.e. more effective crossing-times). This is directly re-

lated to its ability to perform its detection tasks using less intrusive biometric485

procedures.

6. Conclusions

This paper has presented the FlyPAD framework. It is a system able to

carry out PAD dynamically while the individuals are moving. It covers five

different types of attack related to face detection: printed photos, paper masks,490

paper masks without eyes, screen videos, and 3D masks.

The system comprises four modules: the main one is the tracking module

which generates a token with the information of a tracked individual. It is

supported with the detection module, the verification module, the PAD module.

This latter uses different Machine Learning models previously trained for three495

different acquisition distances to perform the face attack detection.

Several experiments in a controlled environment (i.e. the laboratory) and

in a real environment (i.e. an ABC system in a border crossing) have been

developed in order to test the proposal. The obtained results allow concluding

that FlyPAD framework is able to detect On-the-fly (i.e. dynamically) possible500

presentation attacks. This detection can be configured according to a threshold

in order to reduce the number of false positives, increasing the robustness of

the system in a real environment. Regarding the three acquisition distances,

the worse results were for Range-3, the closest to the detector. In this case, the

images have a larger resolution and yield a higher ACER compared to the other505

intervals. This is related to the textures computed in the LBP algorithm, which

can vary too much for such a scale.

As a general conclusion, the results obtained in the real environment are bet-
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ter than those obtained in the laboratory, probably because the laboratory tests

have been more exhaustive and also because more samples were available. More-510

over, it has been detected that certain attacks directly lose their effectiveness in

On-the-Fly approach since at certain distances the faces of the individuals are

not detected. This issue disables these situations as possible attacks.

The system is a functional prototype which has been successfully tested.

Nevertheless, some future guidelines are interesting to validate and also enhance515

its capabilities. For instance, it can be included attacks with silicone masks [25]

[27] and also implement other PAD algorithms that consider temporal infor-

mation and spatial features. Long Short-Term Memory (LSTM) networks [46]

could be interesting at this point.
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