
Relation between Programming Visual Learning with VILEP
and Students’ Emotions

Journal: IEEE Revista Iberoamericana de Tecnologias del Aprendizaje

Manuscript ID Draft

Manuscript Type: Original Article

Index Terms: Computer science education, Learning, Emotion recognition

https://mc.manuscriptcentral.com/rita

IEEE-RITA REVISTA IBEROAMERICANA DE TECNOLOGÍAS DEL APRENDIZAJE

51

1

Abstract—In this article a visual programming tool is shown,

which allows coding programs by abstracting complex parts of

the syntactic structures of the language by means of graphic

representations combined with textual expressions. The tool

allows student to relate the syntax of a language to the logic of

solving a problem. To validate the proposal, we carried out an

experience with a group of students who used the tool and

another group who used Eclipse. The results show that there was

an additional 23.4% of students who used the tool and reduced

their error rate compared to those who used Eclipse.

Index Terms— Computer science education, Learning,

Emotion recognition.

I. INTRODUCTION

HIS paper is an extension of the article published in the

proceedings of the International Congress on Learning,

Innovation and Cooperation CINAIC 2019 entitled

"Evaluation of Students' Emotions in Visual Programming

Learning." The article has been extended in the present work

in the following way: a) a new section of related works has

been incorporated (section II), b) the description of the tool

design has been extended (section III) and c) the analysis of

the results obtained has been extended (subsection E of section

V).

The rapid advance of technology has changed the way

teachers deliver instruction and students learn. Although these

advances are also present in learning programming [1],

learning programming is not an easy task. Learning to

program involves a number of difficult achievements, both for

students in the computer science grades, and for students in

other related grades. However, the former, due to their own

field of study, will have to develop this capacity further [2].

Aktunc (2013) lists numerous challenges that instructors face

and that complicate the learning of programming in the

introductory subjects of computer science and related degrees:

a) great variation in the knowledge profile of students; b)

discouragement and demotivation of most students as they

perceive programming as a difficult and complex cognitive

task; c) excessive time spent teaching the syntax of the

D. Alulema, Universidad de las Fuerzas Armadas ESPE, Sangolquí,

Ecuador; e-mail: doalulema@espe.edu.ec).

M. Paredes, Universidad Rey Juan Carlos, Móstoles, Madrid, España; e-

mail: Maximiliano.paredes@urjc.es).

DOI (Digital Object Identifier) Pendiente

programming language (it should be noted that spending too

much time learning language syntax without applying it in a

context of use is detrimental to students [3]); and d) most

programming environments used for teaching are confusing,

as they were built for professional software development and

do not have a didactic approach, so all these factors generate

problems in introductory programming courses [4].

The traditional way of introducing programming for

beginners is through a language-oriented introductory course

[5]. But this language-oriented approach results in several

problems: a) students have difficulties because of the

complexity of the syntax, b) the syntax requires extra learning

time and c) the language itself does not provide advantages in

the understanding of the programming concepts that underlie

its structures, even its syntax can make it difficult to

understand the concepts. However, the use of a programming

language is necessary for the learning and practice of

programming concepts. This is particularly the reason why the

syllabus of a first-year programming course will often spend a

considerable amount of class time on learning the syntax of

the language [6]. Therefore, language should not be neglected

in the learning process and solutions should be sought that

adequately manage its use as a learning tool in the educational

context to mitigate the disadvantages identified. This research

focuses specifically on finding solutions with this orientation.

In order to motivate young students in the first year, the

learning experience should be enriching by incorporating

practical, creative and "fun" activities [7]. However, in

introductory programming subjects, this is not how students

perceive it [8]. In addition to the challenges of learning to

form structured solutions for programming problems, students

must also deal with the difficulty of the syntax and commands

of the programming language they use to form solutions to

problems, whose commands may have apparent confusing

names. In this difficult context for the student, they often

perceive that a personally significant learning context is not

generated, experiencing a lack of motivation, and may even

lose interest in learning [5].

The aim of this research is to propose educational resources

for learning programming, for which the authors suggest

progressively abstracting the syntax of the programming

language (by means of scaffolding technique). Thus, the aim is

to motivate the student from a positive emotional state. As a

result, students will acquire a certain level of fluency in a

programming language before starting to implement their

solutions in source code directly. Some research proposes that,

Relation between Programming Visual Learning

with VILEP and Students’ Emotions

Darwin Alulema and Maximiliano Paredes

T

Page 1 of 10

https://mc.manuscriptcentral.com/rita

IEEE-RITA REVISTA IBEROAMERICANA DE TECNOLOGÍAS DEL APRENDIZAJE

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

51

2

instead of implementing systems oriented to the complete

learning of a programming language, tools or learning objects

are implemented on a small scale for specific programming

concepts [6]. These tools should integrate scaffolding

techniques [9] that adapt the learning structure and contents to

the student. Research in education and cognitive psychology

suggests that many students today have a visual and

interactive learning profile. Therefore, it seems reasonable to

reduce the textual detail of the programming language syntax

that students have to learn in the early stages, and to develop

more visual content on the programming concepts themselves,

trying to facilitate the relationship of these concepts with the

problem-solving process.

For these reasons, this article proposes a tool called VILEP

(VIsual LEarning Object-oriented Programming) that is

developed for the learning of OOP (Object-Oriented

Programming), which can hide or make visible details of the

language syntax used by the student by combining visual and

textual representations. Thus, it combines visual programming

with textual programming of source code in an appropriate

way, orienting the process to visual learning. Previous studies

show that the use of visual learning has a significant impact on

improving students' problem solving and analytical thinking

skills and promotes active learning [10]. In this regard there

are programming tools with a more or less visual approach to

introduce students to programming, such as Scratch [11],

Alice [12], Blockly [13], Greenfoot [14], among others.

However, visual tools over time cause students to become

dispersed and distract their attention, which is why proposals

such as Rahman's [5] point out not to abandon the use of

textual languages completely. Moreover, this type of tool does

not establish scaffolding techniques for learning programming

as in this proposal. For this reason and without losing sight of

the fact that the objective of an introductory programming

course should not only be to teach a programming language,

but also to teach the different forms of problem solving,

reasoning logic, basic algorithm design and general

programming concepts, trying to have little or minimal

emphasis on language syntax [5]. In this context, the use of

visual programming tools in the early stages of learning could

facilitate learning. Thus, the VILEP tool described in this

article has been developed through model driven engineering

and proposes a graphic editor that allows students to

implement programs in Java through visual resources by

hiding complex syntactic expressions of the language. This

article describes the tool from a teaching approach and

demonstrates in a preliminary way the validity of the tool in

the educational context. For this purpose, an experience with

first-year programming students in the classroom has been

carried out and the knowledge, perceptions, and emotions they

have experienced with the use of the tool have been measured.

The article is structured in the following way: section II

mentions some of the works that deal with the use of

specialized tools in teaching programming. Section III

describes how the VILEP tool was implemented using model

engineering. Section IV discusses the learning method that has

been used to address the use of the proposed tool. Section V

describes the experience made in the classroom and section VI

shows the conclusions and future work.

II. RELATED WORK

Programming is considered a fundamental skill since many

of the programming concepts are used in almost all the basic

courses at the university level [15]. Despite its importance,

teaching programming languages is difficult as it involves the

understanding of theoretical concepts, the practical use of

language semantics, syntactic coding and reasoning logic for

problem solving [16-17]. For this reason the learning of

programming has received greater attention. However, the

traditional approach to learning programming, which is based

on textual languages, is too difficult for many students to

learn, often resulting in low learning success rates in the early

years [17],[19]. [16],[17],[18] [17],[19]..

On the other hand, it should be noted that the educational

model used in classrooms in engineering degrees is usually

[15]: a) auditory, b) abstract, c) deductive, d) passive and e)

sequential, in contrast to most students who are: a) visual, b)

sensitive, c) inductive, and d) active. This difference,

associated with the difficulty of learning a programming

language, mainly contributes to the lack of student interest in

computer courses, low student performance [18] and teacher

frustration [17]. Therefore, there is a problem of demotivation

and performance in the current models of learning

programming, which becomes more visible in the introductory

courses of that subject.

There are several factors that can influence achievement in

introductory programming courses [20]: a) the student's

previous programming experience gained from high schools;

b) experience with prior knowledge in other sciences where

the computer is used; c) the relationship between the students'

learning styles and the programming language learning model;

d) expectations of learning outcomes and student self-efficacy;

and e) the emotions experienced by the students [15]. These

factors can influence the learning process in a positive or

negative way, doing the contents become meaningful. In

addition, problems in learning outcomes could also be due in

part to an incorrect way of teaching programming, or the use

of inappropriate teaching materials [17], as these may not

guide the student in the learning process. All these elements

condition the learning model of programming, in which, and

according to traditional educational approaches, students have

to write the program directly using a programming language.

This can lead to students who have little experience in

programming feeling easily frustrated and also undermine

their motivation to learn [21]. In addition, it also takes a lot of

time and work for teachers to create textual programming

learning materials commonly used in traditional educational

models [22].

To partially solve these problems many tools and

programming environments have been developed to facilitate

efficient learning and understanding [22,23]. In this sense the

tools should present the most relevant programming concepts

taught in an introductory programming course, making sure to

include the concepts that students find difficult [17].

According to Moons [17] there are four main ways to teach

programming. The first is by using a certain order-oriented

programming education methodology to introduce various

Page 2 of 10

https://mc.manuscriptcentral.com/rita

IEEE-RITA REVISTA IBEROAMERICANA DE TECNOLOGÍAS DEL APRENDIZAJE

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

51

3

programming topics. The second is through the use of various

active learning techniques inspired by constructivism, such as

role-playing, active story-telling, workshops, etc. The third

approach is to use a programming language that is designed

for students who are new to programming. The fourth

approach is to use software environments. Moons identifies

three types of software environments for learning

programming [17]: a) micro-world based environments, such

as Scratch [24], LOGO [25], Karel the Robot [26], Jeroo [27],

Alice [28], Kit Lego Mindstorms [29] and CMOTION [30]; b)

algorithm visualisation tools, such as Tango [31], Animal [32],

Jawaa [33], Jhavé [34], Alvis Live! [35] and VisBack [36];

and c) source code visualization and editing tools, such as

DrJava [37], BlueJ [38], ProfessorJ [39], JGrasp [40], JIVE

[41], JEliot 3 [42] and Ville [43]. Among the tools listed in

paragraphs b and c, most are oriented to the OOP paradigm, as

is the case of BlueJ, which is widely used in Java

programming courses. It should be noted that object-oriented

languages (such as Java), as opposed to other languages, entail

a series of additional concepts such as classes, access

modifiers, objects, inheritance, etc., which may be difficult to

understand, but still have the advantage that to date they

remain one of the most popular languages in professional

environments, since they offer the possibility of developing

applications for multiple platforms and technologies, which

can be motivating for students who see their learning as a

professional incentive.

Microworld-based tools promote a high level of motivation

and a positive perception of learning programming [44]. These

tools facilitate programming and learning through the

visualized design and programming interface, because they

allow users to program by manipulating program’s elements

graphically rather than specifying them textually [45]. These

characteristics of graphic environments allow a practical

learning process, based on the concept of learning by doing

[22]. Regarding the tools for the visualization of algorithms,

the students who use these tools decrease the semantic errors

and keep the attention on the specific details of the behaviour

of the algorithm [35]. Finally, visualization and editing tools

for source code allow students to see the structure of programs

at run and design time (through artifacts such as class

diagrams), even in some cases allowing automatic code

generation [17]. However, these types of tools have the

limitation that the student has to deal with the syntactic

complexity of programming language.

Unlike other tools, the solution presented in this article

combines the characteristics of micro-world based

environments with Algorithm visualization tools. This solution

features a scaffolding mechanism [46], where the student is

presented with small fragments of source code combined with

graphical expressions to relate the solution phases of a

problem to a specific textual syntax of a particular

programming language. This way the student relates the

syntactic expressions with graphic expressions according to

their abilities, making them gradually master the syntax of the

programming language they are using.

III. VILEP (VISUAL LEARNING OBJECT-ORIENTED

PROGRAMMING)

This section describes the details of design and

implementation of the tool, which has been developed using

MDE (Model-driven engineering) techniques and reaches a

specific instance through specific models and a series of

transformations between models. The design is structured in

three main components: a) a metamodel created with Eclipse

Modeling Framework (EMF), which allows to model the

visual construction of the program developed by the student;

b) a graphic user interface designed with Sirius so that the

student can interact with the tool visually; and c) a set of

model transformation rules to perform the code generation

through Acceleo, from the program built by the student in the

graphic editor. The result is a plug-in that the student can

install in Eclipse. To do this, the student must add the folders

with the metamodels and the graphic editor of the tool, adding

a new option to create VILEP projects where files with the

extension ".javamodel" can be created for students to design

their programs.

A. Definition of the Metamodel

This subsection describes the metamodel designed for the

OOP domain, which allows to ignore the complexity of the

syntax of a language. Figure 1 shows the meta-classes of the

metamodel and their relationships. The meta-classes used to

describe the parts of an object-oriented program are:

• Explanation: This meta-class represents the concept of

commenting on a source code and allows the student

to automatically insert a short description of the code

they are creating from their design.

• Project: This meta-class represents the concept of a

project created by the student.

• Class: This meta-class represents the classes that the

student will implement in their project.

• Method: This meta-class represents the methods or

functions of a class.

• Object: This meta-class groups the daughter meta-

classes Operator, Variable and Message, which

represent respectively the available mathematical

operations (addition, subtraction, multiplication,

division and remainder), the declarations of the

variables together with the types of data, and the

reading and output of information by console.

• Argument: This meta-class models the input or output

arguments of the methods.

These components are related to each other: "Project"

contains "Class" and this in turn contains "Method." Methods

are related to other methods and may contain several

"Objects" which represent mathematical operations, reading

and writing by keyboard. In addition, "Method" can have

"Argument," whose references allow methods to have local

variables for their operations.

.

Page 3 of 10

https://mc.manuscriptcentral.com/rita

IEEE-RITA REVISTA IBEROAMERICANA DE TECNOLOGÍAS DEL APRENDIZAJE

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

51

4

Fig. 1. Proposed metamodel for the visual tool

A. Model transformation

For the generation of the source code in Acceleo, we have

implemented some transformation rules that sequence a

series of basic tasks that must be done for any simple

program and that we have specified in the transformation

model. These tasks are listed below for the creation of Java

files:

1. Creating the program files.

2. Declaring the required libraries for the methods.

3. Declaring the classes.

4. Declaring the methods.

5. Declaring the variables used.

6. Entering values.

7. Performing mathematical operations.

8. Displaying values.

These basic rules, which are learned at the beginning of

the introductory programming courses, are graphically

represented and the relationships that each of the

components that end up forming a program are delimited.

For example, methods are created only within classes,

variables within methods, arithmetic operations receive

numerical values stored in variables and their result is

assigned to another variable. This way students focus on the

concept of the task sequence that allows them to solve a

problem, before facing the syntax of a language. With this

tool students learn to perform arithmetic operations, data

input and output by console, use of variables, method

declaration, data types and class declaration.

The transformation rules defined, which transform the

graphic expressions of the program designed by the student,

generate a code (in this case in Java) that contains: a) Call

to the Scanner Class of the java.util package for data entry

by console, b) Declaration of a Scanner instance to store the

information entered by console, c) Declaration of variables,

d) Writing messages on screen with the println() method, e)

Entry of values with the Scanner class nextLine() method

and writing on screen messages and storage in a variable, f)

Declaration of operations, and g) Writing on screen the

results of operations with the method println().

IV. VISUAL LEARNING OF PROGRAMMING WITH VILEP

This section describes the user interface of the tool, and

its use from a teaching approach. VILEP allows the student

to work with basic OOP concepts, such as classes, methods,

arguments, and also with other programming concepts in

general such as arithmetic expressions, assignments, input

and output operations. Table 1 below summarises some of

the differences between Eclipse and VILEP when used in

the early stages of teaching programming.

TABLE 1. MAIN DIFFERENCES BETWEEN ECLIPSE AND VILEP

Eclipse VILEP

The source code must be written

manually.

Generating source code

automatically.

Comments must be written by the

programmer.

Didactic comments for the reading

and interpretation of the source

code.

Well integrated compilation and

execution.

For the compilation and execution

of the program a new document

must be generated.

Use of textual syntax for all

programming concepts.

Use of graphical syntax of the

basic concepts of programming.

It does not have a Scaffolding

mechanism.

Scaffolding mechanism that adjusts

the syntax to the level of

knowledge of the programmer.

The basic concepts of programming that the tool

incorporates are represented by visual components available

in a control palette, where the student can select and drag-

drop on the editor (called Canvas) and make the design of a

program. The editor visualizes the composition of the

program at every moment showing some parts of the Java

syntax and hiding others (the most complex ones) through

visual icons. For example, the tool shows the complete

syntax of a simple instruction in Java as an output

operation: "System.out.println("Enter to:");" However, a

more complex instruction such as an input operation on a

variable such as: “a=Integer.parseInt(leer.nextLine());” is

represented visually, where a pencil symbol represents that

it is a user typing operation on the keyboard and an "x"

symbol in square brackets expresses that the result is

assigned to a variable (in this case a variable called "a" of

type int, see Mark B in Figure 2). As the student's activity is

Page 4 of 10

https://mc.manuscriptcentral.com/rita

IEEE-RITA REVISTA IBEROAMERICANA DE TECNOLOGÍAS DEL APRENDIZAJE

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

51

5

not focused on language syntax, it presents less cognitive

load, so the student can focus more on programming

concepts during the creation of programs. However, the tool

eliminates levels of abstraction and shows more detail of

the language structures as the student advances in the

handling of the syntax. The teacher adjusts to each problem

or activity different levels of scaffolding according to

different degrees of knowledge. Each student has an

associated knowledge profile and the tool adjusts the

scaffolding according to their profile. As the scaffolding

progresses in the activities, the profile is adjusted. This

way, VILEP adapts the scaffolding level for a progressive

understanding of the student in the creation of a program

for a specific programming language. The tool offers four

main functionalities:

• Adding class, method and variable declarations to

the program. These components are in the palette

and the student drags them to compose the

program.

• Perform console read and write (standard input and

output operations).

• Perform basic mathematical operations (addition,

subtraction, multiplication, division and

remainder). It is possible to associate the variables

with the values to operate and the variable to

which the result of the operation is assigned.

• Describe invocations of selective and iterative

control methods and structures.

Table 2 shows the components of VILEP and their

description. Students can design basic algorithms in a

graphic way without going into further details of a language

syntax. The graphic designs generated by the student are

interpreted with a reading flow from top to bottom and from

left to right, which is translated by the tool and inserted in a

".java" file. However, some concepts such as the

declaration of objects or inheritance have not been

considered. Taking into account the meaning of the visual

representations in Table 1, the program fragment in Figure

2 can be easily interpreted: a class called Operations is

declared, which contains the "Main" method. Within this

method, the following sequence of instructions is described:

a message is written on the screen ("Enter A"), it is declared

and reads the keyboard in the variable "a," then it does the

same for the variable "b" and then it multiplies its two

contents and the result is assigned to the variable "x"

declared as int, then the variable "c," which was entered by

keyboard, is added to "x" and the result is assigned in "y,"

finally the content of this variable is printed on the screen.

TABLE 2. MAIN COMPONENTS AND THEIR VISUAL REPRESENTATIONS

Component Visual

representation

Description

Class

Declaration of a class.

Method

Declaration of a method.

Argument

Actual parameters of methods.

Variable

Variable declaration.

Operador

Arithmetic operator.

Message

Writing text by console.

Input

Reading from the keyboard.

Output Writing a variable by console.

Connection Link between program components.

A. Teaching method

The aim of the tool is to reduce the cognitive workload of a

language for students who are inexperienced in

programming. For this purpose, the learning activities with

the tool are developed with short work tasks, so that the

student gains confidence to face more difficult problems,

which will require more complicated language structures.

The teaching approach is mainly based on the fact that

students will use the tool to learn the principles of the basic

syntax of the programming language. While using the tool's

editor, they will visually observe how some lines of code

are built and at the end they will observe the complete code.

This allows the student to see immediately how the

decisions they make in the design of the programs are

directly reflected in a specific syntax of a programming

language. In this context, the visual learning that is

generated will allow students to gradually gain confidence

in writing programs for a specific language.

The teaching methodology for the use of the VILEP tool

can be broadly summarised in the following steps:

1. The teacher explains the basic programming

concepts and briefly presents the syntax of Java. In

addition, they must show the visual representation

of the VILEP components of these concepts.

2. The teacher will propose a statement of a problem to

be solved and will reflect with the students on the

steps to be taken to solve it.

3. Subsequently, the students use VILEP

autonomously to implement the program that

solves the proposed problem. During this design

process the tool will show fragments of source

code associated with certain actions, and hide

others. Finally, the tool will generate the source

code it has implemented extended with

explanatory comments.

4. The teacher will explain the doubts and the

students will review and be able to execute the

program they have obtained and verify the validity

of its solutions.

Page 5 of 10

https://mc.manuscriptcentral.com/rita

IEEE-RITA REVISTA IBEROAMERICANA DE TECNOLOGÍAS DEL APRENDIZAJE

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

51

6

Fig. 2. Composition of a program with VILEP

I. CLASSROOM EXPERIENCE AND RESULTS

To demonstrate the validity of the tool in the teaching

process, an exploratory study was carried out with students

in the classroom. It is detailed below.

A. Teaching method

The experience with students aimed to validate whether the

use of VILEP in an introductory programming course

improves learning outcomes and the emotional state of the

student during the learning process.

B. Sample

The sample selected was students from the first year of the

Electronics and Automation degree at the University of the

Armed Forces ESPE, in Quito, Ecuador, in the second

semester of 2018, and was made up of 19 subjects (17 men

and 2 women), who had no previous programming

experience. This sample was randomly organized into two

groups: experimental group (EG) and control group (CG).

C. Variables and instruments

The independent variable was the applied teaching tool: in

the CG the classic teaching tool of a development

environment was applied, while in the EG the VILEP tool

was used. The dependent variables measured were the level

of knowledge acquired and the positive and negative

emotions experienced. For this purpose, in both groups, a

pre-test of these variables was made at the beginning of the

experience, and a post-test at the end. The instruments to

measure these variables were two scales. Firstly, a

knowledge scale with 6 multi-option items designed

specifically for the experience. This scale raised questions

about basic OOP concepts in which the student had to

interpret source code in Java. Secondly, a validated scale

was used to measure emotions: Watson's PANAS [47]. The

reason for using this scale is that it is already validated in

the educational context and it allows to value the positive

and negative emotions of the student in the learning task.

The scale is composed of 20 terms (Table 3) that describe

emotions of a positive or negative nature (10 of them

positive and 10 negative). The students must evaluate how

they feel for each of these emotional terms by means of a

Likert scale with 5 options of response (not at all, very

little, some, quite and a lot).

TABLE 3. PANAS EMOTIONS SCALE

Positive emotions terms Negative emotion terms

Interested Decided Disgusted Tense

Disposed Attentive Guilty Ashamed

Animated Active Fearful Nervous

Enthusiastic Energetic Angry Uneasy

Proud Inspired Irritated Scared

D. Method

The experience was carried out with the students of the

Introduction to Engineering course, and one of the learning

outcomes is to study the basic concepts of programming. To

this end, 2 of the 6 sessions of the course were used to

achieve the learning outcome. The experience began with

an explanation to the students of the objectives of the

activity and requesting their consent to participate (100% of

the students participated). Then, the participants were

randomly organized in two groups: a) EG (Experimental

Group), a group made up of 10 participants who used the

VILEP tool, and b) CG (Control Group), a group made up

of 9 participants who had the usual teaching method using

the Eclipse environment. While the tool was used in an

exploratory way for this experience of some basic OOP

Page 6 of 10

https://mc.manuscriptcentral.com/rita

IEEE-RITA REVISTA IBEROAMERICANA DE TECNOLOGÍAS DEL APRENDIZAJE

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

51

7

concepts, it could be used for the rest of the course

concepts.

Figure 3 shows the development of the experience. Once

the groups were constituted, the intervention began with an

initial assessment of the students' knowledge and emotional

state. Then, the teacher (the same in both groups) explained

the theoretical foundations of OOP (classes, methods and

attributes) and the basic syntax of Java (class and attribute

statements, arithmetic operators, input and output), using

the specific tool for each group. Later, in the EG, they used

the VILEP tool and the CG used Eclipse to develop the first

program with the advice of the teacher. Next, both groups

did several tests implementing a basic Java program, the

EG using VILEP by visual programming and the CG using

Eclipse with classic textual programming. Figure 4 shows a

screenshot of a program developed by CG students using

Eclipse, while Figure 2 shows a program developed by EG

students using VILEP. Finally, knowledge and emotions

were re-evaluated after the completion of the task. The

complete planning and its time distribution for each group

is shown in Table 4.

Fig. 3. Methodology of the classroom experience

Fig. 4. Control group learning task

A. Experimental results

For the comparison of the results obtained in both

groups, two analyses were carried out: a) a comparison of

hypotheses of means equality of the measured variables and

b) a comparison of the error rates in the learning task. In

order to carry out the comparison of means equality, the

following statistical variables have been defined:

• KNOWLEDGE_PRE: These are the results of the

level of knowledge at the beginning of the

experience.

• KNOWLEDGE_POS: This is the knowledge of the

students after the experience.

• POSITIVE_EMOTIONS_PRE: These are the positive

emotions of the students at the beginning of the

experience.

• POSITIVE_EMOTIONS_POS: It shows students'

positive emotions after the experience.

• NEGATIVE_EMOTIONS_PRE: It measures students'

negative emotions at the beginning of the

experience.

• NEGATIVE_EMOTIONS_POS: These are the

negative emotions of the students at the end of the

experience.

• NEGATIVE_PERCEPTIONS_TAR: It measures the

negative perceptions of the students after the

experience.

• POSITIVE_PERCEPTIONS_TAR: It shows students'

positive perceptions of the experience.

Table 5 shows the descriptive statistics comparing both

groups. Table 5 shows that the level of knowledge at the

end of the experience is higher in the group that used

VILEP than in those that did not (variable

KNOWLEDGE_POS=3.8 vs. 3.67). Similarly, it can also

be seen in this same table that the positive emotions were

higher at the end of the experience in the students who used

VILEP than in the students who used Eclipse (variable

POSITIVE_EMOTIONS_POS=38.8 vs. 37.78). However,

it was also identified that negative emotions were slightly

higher in the experimental group than in the control group.

In order to check if these differences are statistically

significant or not, a contrast test of means was made. To do

so, firstly, it was identified which variables followed a

normal distribution, applying the Shapiro Wilk test (p=0.05)

when dealing with small samples.

Page 7 of 10

https://mc.manuscriptcentral.com/rita

IEEE-RITA REVISTA IBEROAMERICANA DE TECNOLOGÍAS DEL APRENDIZAJE

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

51

8

TABLE 4. TEMPORALITY OF THE EXPERIENCE

Phase
Experimental

Group

Control

group

Presentation and group formation 15” 15”

Pre-test performance (knowledge and emotions) 30” 30”

Explanation of OOP and Java concepts with VILEP 1h -

Explanation of OOP and Java concepts with Eclipse - 1h

Use of VILEP with teacher assistance 30” -

Using Eclipse with Teacher Assistance - 30”

Performing autonomous program implementation tasks with

VILEP

30” -

Performing Standalone Program Deployment Tasks with

Eclipse

- 30”

Post-test performance (knowledge and emotions) 30” 30”

TIME OF EXPERIENCE 3h 15” 3h 15”

In this study it was found that all followed a normal

distribution except the variables

POSITIVE_EMOTIONS_POS and

POSITIVE_PERCEPTIONS_TAR. For these two variables,

the mean comparison was performed by the non-parametric

Mann-Whitney test, while for the rest of the variables the t-

Student test was performed (both with a significance level

p=0.05). The hypothesis contrast in both tests indicated that

there was no difference between the means in any of the

variables. Therefore, although no significant difference was

found, it can be stated that there is a trend of improvement

in the level of knowledge and in the positive emotions of

the VILEP use against the Eclipse use, although there is a

trend of worsening in the negative emotions.

Fig. 5. Learning outcomes according to error rate

On the other hand, analysing the number of students who

increased their positive emotions in one group and in

another, it can be seen that in the group that used VILEP,

60% of the students increased their positive emotions

during the completion of the task, while in the control group

it was only 44.4% of the students. Therefore, it can be

understood that the use of visual programming with VILEP

fosters positive emotions of some students in the process of

programming learning, although it should not be neglected

that the use of the tool did not decrease negative emotions

as much as it did in the control group (40% of GE vs 66.6%

of GC). These results could be related to the side effect of

the cognitive burden that the use of visual representations in

programming learning entails [48].

As indicated above, in a second phase of result analysis,

the pre-test and post-test error rates were reviewed for each

group. In the EG at the end of the experience, 40% of the

students improved their results, 50% maintained their

results and 10% of the students increased their errors. In the

CG, 44.5% of the students improved their results, 11.1%

maintained the same level and 33.4% increased their errors.

As can be seen, almost half of the students in the two

groups improved their scores (44.5% of the CG vs. 40% of

the EG) however, in the control group there was a

significant increase of students with more errors compared

to the experimental group (33.4% of the CG vs. 10% of the

EG). Figure 5 graphically shows these data, where it can be

seen how students who used VILEP either improved or

maintained their results, and very few worsened them,

compared to those who used Eclipse, where there was a

high number of students who made more errors in the post-

test. Hence, based on these data it seems that the use of

visual programming with the VILEP tool results in students

making fewer errors in coding. The authors think that this

could be due to the fact that visual programming with

VILEP allows the student to focus only on the concepts and

structures of programming during the learning process,

making fewer mistakes later on when applying them to

programme coding. This would explain why students who

used Eclipse made more coding errors, since in the learning

process they had to work with the concepts and

programming structures, together with the difficulty of

language syntax.

TABLE 5. DESCRIPTIVE STATISTICS OF THE TWO GROUPS

Experimental group

(GE) (N=10)

Control group

(GC) (N=9)
M

in
im

u
m

M
a
x

im
u

m

H
a

lf

S
ta

n
d

a
r
d

d
e
v

ia
ti

o
n

M
in

im
u

m

M
a
x

im
u

m

H
a

lf

S
ta

n
d

a
r
d

d
e
v

ia
ti

o
n

KNOWLEDGE_PRE 1 6 3,50 1,581 0 6 2,89 1764

KNOWLEDGE_POS 2 6 3,80 1,549 1 6 3,67 1658

POSITIVE_EMOTIONS

_PRE
33 46 38,90 3,814 28 44 37,22 5,019

POSITIVE_EMOTIONS

_POS
28 44 38,80 4,417 29 47 37,78 6360

NEGATIVE_EMOTIONS

_PRE
10 22 14,50 4,275 10 22 14,67 3841

NEGATIVE_EMOTIONS

_POS
10 22 13,70 4,029 10 17 12,89 2,619

NEGATIVE_PERCEPTIONS

_TAR
1,2 2,8 2,060 ,5337 1,2 3 1911 ,5754

PERCEPTIONS

 POSITIVAS_TAR
4 5 4,70 ,483 4 5 4,78 ,441

II. CONCLUSION

In computer engineering and related degrees,

introductory programming subjects have low learning

outcomes and low pass rates. One of the reasons that

generates these bad results is the difficulty that these

inexperienced students have in understanding and properly

handling the syntax of programming languages. These

difficulties end up generating a lack of motivation in the

student, because not only must they face the challenge of

understanding fundamental programming concepts, but also

Page 8 of 10

https://mc.manuscriptcentral.com/rita

IEEE-RITA REVISTA IBEROAMERICANA DE TECNOLOGÍAS DEL APRENDIZAJE

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

51

9

must learn the programming language associated with those

concepts. This article presents the VILEP tool, which

provides a visual programming editor that abstracts the

complexity of language use and focuses on the concepts of

programming. The tool implements a mechanism of

Scaffolding that allows the student to visualize or not the

most complex parts of the syntactic structures of

programming languages. The mechanism adds visual

representations and combines them with fragments of

source code, so that as the student assimilates the syntax of

the language, the tool decreases the level of abstraction and

shows more detail of the syntactic structures until the

student ends up developing the source code directly. This

first exploratory study was structured with the first year

students of the Electronics and Automation degree. Two

work groups were organized to develop a program in Java:

one of them used the proposed VILEP tool and the other

worked with the Eclipse development environment through

text programming (a common tool used in computer science

subjects). A knowledge scale was used to measure learning

outcomes and the PANAS scale to measure students'

emotions during the learning process. It can be concluded

that the proposed visual programming tool considerably

reduced the number of students who at the end of the

experience made mistakes with the programming language

with respect to the group that did not use the tool (23.4%

fewer students). In addition, it was found that more students

experienced positive emotions during the programming task

when using the VILEP tool (60% of the students in the

group) than when not using it (44.4% of the group).

Based on these results, some lines of future work are

opened. The analysis of the results is an exploratory

analysis, so it is necessary to replicate new experiences in

other universities with a deeper statistical analysis and with

a greater number of participants, to confirm whether the

improvements in learning outcomes and emotions found are

statistically significant. In addition, studies should be

carried out that analyze the correlations between learning

outcomes and emotions during the programming learning

process. On the other hand, it is necessary to incorporate

new features such as reverse engineering to graphically

represent programs made in text form, expansion of

functions for OOP and web resources of the project with

additional information so that the tool can be used by other

users.

ACKNOWLEDGMENT

This work has been financed thanks to iProg from

MINECO (ref. TIN2015-66731-C2-1-R) and e-Madrid-CM

(ref. P2018 / TCS-4307) with FSE and FEDER funds.

REFERENCES

[1] H. Amer and A. Ain, “Smart – Learning Course Transformation

for an Introductory Programming Course,” 2017 IEEE 17th Int.

Conf. Adv. Learn. Technol., pp. 463–465, 2017.

[2] A. Forte and M. Guzdial, “Motivation and Nonmajors in

Computer Science : Identifying Discrete Audiences for

Introductory Courses,” vol. 48, no. 2, pp. 248–253, 2005.

[3] L. Mclver and D. Conway, “Seven Deadly Sins of Introducctory

Prograimmting Language Design Linda,” Notes Queries, pp.

309–316, 1996.

[4] E. Kaila, M. Laakso, T. Rajala, A. Mäkeläinen, and E. Lokkila,

“Technology-Enhanced Programming Courses for Upper

Secondary School Students,” pp. 683–688, 2018.

[5] R. Mahmudur and R. Paudel, “Preliminary Experience and

Learning Outcomes by Infusing Interactive and Active Learning

to Teach an Introductory Programming Course in Python,” 2018.

[6] C. C. W. Hulls, A. J. Neale, B. N. Komalo, V. Petrov, and D. J.

Brush, “Interactive Online Tutorial Assistance for a First

Programming Course,” vol. 48, no. 4, pp. 719–728, 2005.

[7] M. Schmidt, V. Benzing, A. Wallman-Jones, M. F. Mavilidi, D.

R. Lubans, and F. Paas, “Embodied learning in the classroom:

Effects on primary school children’s attention and foreign

language vocabulary learning,” Psychol. Sport Exerc., vol. 43,

pp. 45–54, 2019.

[8] O. Debdi, M. Paredes-Velasco, and J. A. Velazquez-Iturbide,

“Influence of Pedagogic Approaches and Learning Styles on

Motivation and Educational Efficiency of Computer Science

Students,” Rev. Iberoam. Tecnol. del Aprendiz., vol. 11, no. 3,

pp. 213–218, 2016.

[9] K. Willey and A. Gardner, “Collaborative learning frameworks

to promote a positive learning culture,” Proc. - Front. Educ.

Conf. FIE, pp. 1–6, 2012.

[10] L. P. Nelson and M. L. Crow, “Do Active-Learning Strategies

Improve Students’ Critical Thinking?,” High. Educ. Stud., vol. 4,

no. 2, pp. 77–90, 2014.

[11] X. Basogain-Olabe, M. Á. Olabe-Basogain, and J. C. Olabe-

Basogain, “Pensamiento Computacional a través de la

Programación: Paradigma de Aprendizaje,” Rev. Educ. a

Distancia, vol. 46, no. 46, 2015.

[12] O. Aktunc, “A Teaching Methodology for Introductory

Programming Courses using Alice,” Int. J. Mod. Eng. Res., vol.

3, no. 1, pp. 350–353, 2013.

[13] C. Dumitrescu, R. L. Olteanu, L. M. Gorghiu, and G. Gorghiu,

“Using virtual experiments in the teaching process,” vol. 1, no.

1, pp. 776–779, 2009.

[14] M. Kölling, “The Greenfoot Programming Environment,” ACM

Trans. Comput. Educ., vol. 10, no. 4, pp. 1–21, 2010.

[15] J. van Niekerk and P. Webb, “The effectiveness of brain-

compatible blended learning material in the teaching of

programming logic,” Comput. Educ., vol. 103, pp. 16–27, 2016.

[16] G. M. M. Bashir and A. S. M. L. Hoque, “An effective learning

and teaching model for programming languages,” J. Comput.

Educ., vol. 3, no. 4, pp. 413–437, 2016.

[17] J. Moons and C. De Backer, “The design and pilot evaluation of

an interactive learning environment for introductory

programming influenced by cognitive load theory and

constructivism,” Comput. Educ., vol. 60, no. 1, pp. 368–384,

2013.

[18] M. Koorsse, C. Cilliers, and A. Calitz, “Programming assistance

tools to support the learning of IT programming in South African

secondary schools,” Comput. Educ., vol. 82, pp. 162–178, 2015.

[19] P. Tshering, D. Lhamo, L. Yu, and A. Berglund, “How Do First

Year Students Learn C Programming in Bhutan?,” Proc. - 5th

Int. Conf. Learn. Teach. Comput. Eng. LaTiCE 2017, pp. 25–29,

2017.

[20] C. J. Olelewe and E. E. Agomuo, “Effects of B-learning and F2F

learning environments on students’ achievement in QBASIC

programming,” Comput. Educ., vol. 103, pp. 76–86, 2016.

[21] K. J. Harms, J. Chen, and C. Kelleher, “Distractors in parsons

problems decrease learning efficiency for young novice

programmers,” ICER 2016 - Proc. 2016 ACM Conf. Int. Comput.

Educ. Res., pp. 241–250, 2016.

[22] J. M. Su and T. W. Lin, “Building a Simulated Blockly-Arduino-

Based Programming Learning Tool: A Preliminary Study,” Proc.

- 2018 7th Int. Congr. Adv. Appl. Informatics, IIAI-AAI 2018, pp.

378–381, 2018.

[23] D. Saito, H. Washizaki, and Y. Fukazawa, “Work in progress: A

comparison of programming way: Illustration-based

programming and text-based programming,” Proc. 2015 IEEE

Int. Conf. Teaching, Assess. Learn. Eng. TALE 2015, no.

December, pp. 220–223, 2016.

[24] S. Uludag, M. Karakus, and S. W. Turner, “Implementing

Page 9 of 10

https://mc.manuscriptcentral.com/rita

IEEE-RITA REVISTA IBEROAMERICANA DE TECNOLOGÍAS DEL APRENDIZAJE

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

51

10

IT0/CS0 with scratch, app inventor for android, and lego

mindstorms,” SIGITE’11 - Proc. 2011 ACM Spec. Interes. Gr.

Inf. Technol. Educ. Conf., pp. 183–189, 2011.

[25] D. M. Kurland and R. D. Pea, “Children’s Mental Models of

Recursive Logo Programs,” J. Educ. Comput. Res., vol. 1, no. 2,

pp. 235–243, 1985.

[26] K. Dai, Y. Zhao, and R. Chen, “Research and practice on

constructing the course of programming language,” Proc. - 10th

IEEE Int. Conf. Comput. Inf. Technol. CIT-2010, 7th IEEE Int.

Conf. Embed. Softw. Syst. ICESS-2010, ScalCom-2010, no. Cit,

pp. 2033–2038, 2010.

[27] B. Dorn, “Jeroo : A Tool for Introducing Object-Oriented

Programming Northwest Missouri State University,” Control,

pp. 201–204, 2003.

[28] S. Cooper, W. Dann, and R. Pausch, “Teaching objects-first in

introductory computer science,” SIGCSE Bull. (Association

Comput. Mach. Spec. Interes. Gr. Comput. Sci. Educ., pp. 191–

195, 2003.

[29] S. H. Kim and J. W. Jeon, “Introduction for freshmen to

embedded systems using LEGO mindstorms,” IEEE Trans.

Educ., vol. 52, no. 1, pp. 99–108, 2009.

[30] S. L. Finkelstein, A. Nickel, L. Harrison, E. A. Suma, and T.

Barnes, “cMotion: A new game design to teach emotion

recognition and programming logic to children using virtual

humans,” Proc. - IEEE Virtual Real., pp. 249–250, 2009.

[31] J. T. Stasko, “Tango: A Framework and System for Algorithm

Animation,” Computer (Long. Beach. Calif)., vol. 23, no. 9, pp.

27–39, 1990.

[32] G. Rbling, M. Sch, B. Freisleben, and D.- Siegen, “The

ANIMAL Algorithm Animation Tool,” pp. 37–40, 2000.

[33] A. Akingbade, T. Finley, D. Jackson, P. Patel, and S. H. Rodger,

“JAWAA: Easy web-based animation from CS 0 to advanced CS

courses,” SIGCSE Bull. (Association Comput. Mach. Spec.

Interes. Gr. Comput. Sci. Educ., pp. 162–166, 2003.

[34] T. L. Naps, J. R. Eagan, and L. L. Norton, “JHAVE - an

environment to actively engage students in Web-based algorithm

visualizations,” SIGCSE Bull. (Association Comput. Mach. Spec.

Interes. Gr. Comput. Sci. Educ., pp. 109–113, 2000.

[35] C. D. Hundhausen and J. L. Brown, “Designing, visualizing, and

discussing algorithms within a CS 1 studio experience: An

empirical study,” Comput. Educ., vol. 50, no. 1, pp. 301–326,

2008.

[36] C. Lacave, J. Á. Velázquez-Iturbide, M. Paredes-Velasco, and A.

I. Molina, “Analyzing the influence of a visualization system on

students’ emotions: An empirical case study,” Comput. Educ.,

vol. 149, no. January, 2020.

[37] E. Allen and B. Stoler, “Dr Java : A lightweight pedagogic

environment for Java,” 2002.

[38] M. C. Jadud, “A First Look at Novice Compilation Behaviour

Using BlueJ,” Comput. Sci. Educ., vol. 15, no. 1, pp. 25–40,

2005.

[39] K. E. Gray and M. Flatt, “ProfessorJ : AA gradual introduction

to Java through language levels,” Proc. Conf. Object-Oriented

Program. Syst. Lang. Appl. OOPSLA, pp. 170–177, 2003.

[40] J. H. Cross and D. Hendrix, “Workshop jGRASP: An integrated

development environment with visualizations for teaching Java

in CS1, CS2, and beyond,” Proc. - Front. Educ. Conf. FIE, p. 1,

2006.

[41] P. V. Gestwicki and B. Jayaraman, “JIVE: Java interactive

visualization environment,” Proc. Conf. Object-Oriented

Program. Syst. Lang. Appl. OOPSLA, pp. 226–227, 2004.

[42] A. Moreno and M. S. Joy, “Jeliot 3 in a Demanding Educational

Setting,” Electron. Notes Theor. Comput. Sci., vol. 178, pp. 51–

59, 2007.

[43] T. Rajala, M.-J. Laakso, E. Kaila, and T. Salakoski, “VILLE -- A

Language-Independent Program Visualization Tool,” Seventh

Balt. Sea Conf. Comput. Educ. Res. (Koli Call. 2007), vol. 88,

no. January 2016, pp. 151–159, 2007.

[44] B. Kaučič and T. Asič, “Improving introductory programming

with Scratch?,” MIPRO 2011 - 34th Int. Conv. Inf. Commun.

Technol. Electron. Microelectron. - Proc., pp. 1095–1100, 2011.

[45] J. M. Su and S. J. Wang, “A Web-Based learning activity

integrated with scratch tool to support programming learning,”

Ubi-Media 2017 - Proc. 10th Int. Conf. Ubi-Media Comput.

Work. with 4th Int. Work. Adv. E-Learning 1st Int. Work.

Multimed. IoT Networks, Syst. Appl., pp. 1–4, 2017.

[46] C. H. Chen and V. Law, “Scaffolding individual and

collaborative game-based learning in learning performance and

intrinsic motivation,” Comput. Human Behav., vol. 55, pp.

1201–1212, 2016.

[47] A. Watson, D., Clark, L., & Tellegen, “Development and

validation of brief measures of positive and negative affect: the

PANAS scales,” J. Pers. Soc. Psychol., vol. 54, no. 6, pp. 1063–

1070, 1988.

[48] P. Crescenzi, A. Malizia, M. C. Verri, P. Diaz, and I. Aedo, “On

Two Collateral Effects of Using Algorithm Visualizations,” Br.

J. Educ. Technol., vol. 42, no. 6, pp. 145–147, 2011.

Darwin Alulema received the degrees of Engineer in Electronics and

Telecommunications (Ecuador-2006), Lawyer of the Courts and Tribunals

of the Republic (Ecuador-2011), Master in Teleinformatics and Computer

Networks (Ecuador-2009), Master in Multimedia Applications (Spain-

2015) and Master in Civil Law and Civil Procedure (Ecuador-2016). Since

2007 he has been a Professor at the University of the Armed Forces, in

Ecuador. [16],[17],[18]. [17],[19] . [22],[23]

Maximiliano Paredes-Velasco received the degree of Ph.D. in computer

science from the University of Castilla-La Mancha, Spain, in 2006. He is

currently a Professor at the Rey Juan Carlos University. His research

interests include different fields of computer-supported learning

(collaborative learning, active learning, and mobile learning) and human-

computer interaction. He is the author of numerous articles and several

international conference papers. His research focuses on collaborative

learning, ubiquitous computing, and human-computer interaction.

Page 10 of 10

https://mc.manuscriptcentral.com/rita

IEEE-RITA REVISTA IBEROAMERICANA DE TECNOLOGÍAS DEL APRENDIZAJE

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

