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Maŕıa Sierra-Paradinasa,b,1, Óscar Soto-Sánchezb, Antonio Alonso-Ayusob, F. Javier
Mart́ın-Campoc, Micael Gallegob

aIDOM Consulting, Engineering, Architecture, Spain
bDepartment of Computer Science, Computer Architecture, Computer Languages & Information Systems, Statistics

& Operations Research, Universidad Rey Juan Carlos, Spain
cDpto. de Estad́ıstica e Investigación Operativa, Instituto de Matemática Interdisciplinar, Universidad Complutense
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Abstract

From an economic point of view, the steel industry plays an important role and, when it comes to

responding to new challenges, innovation is a crucial factor. This paper proposes a mathematical

methodology to solve the slitting problem in a steel company located in Europe. The slitting

problem occurs when large width steel coils are slit into narrower coils, known as strips, to meet

the requirements of the customers. A major challenge here is defining a slitting plan to fulfil

all these requirements, as well as ongoing operational constraints and customer demands. The

company looks for a reduction of the leftovers generated in the entire process, while maximising

the overall accuracy of the orders. These leftovers may be used in the future as part of new orders

provided they are able to respond to specific requirements, or otherwise they are discarded and

considered as scrap. This paper introduces a novel mixed integer linear optimisation model to

respond to a specific slitting problem. The model is validated with real data and it outperforms

the results obtained by the company in different ways: by adjusting the orders that are to be

served, by reducing the amount of scrap and by using the retails for future orders. Furthermore,

the model is solved in only a few minutes, while the company needs several hours to prepare the

scheduling in the current operating process.
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1. Introduction

On a worldwide basis, the steel industry plays an important role. In 2019, steel mills produced

1,869 million tonnes of steel, 8.5% of which was produced within the European Union and 53.3%

within China. In 2019, the largest producer in the world was ArcelorMittal with an annual tonnage

of 97 million tonnes, followed by China Baowu Group with an annual tonnage of 95 million tonnes

(World Steel Association (2020) [32]). The World Steel Association (2019) [33] reported that in

2017, the steel industry generated a total of US$500 billion value added and a further US$1.2

trillion through its global supply chain.

There is no doubt that innovation is of crucial importance in the steel industry. In 2017, 5.9% of

its revenue was invested in capital investment projects, research and process improvement (World

Steel Association (2019) [33]). The steel industry needs to respond to emerging challenges in terms

of its processes, with optimisation methods been considered as an essential tool for the continuous

improvement of the production processes and how they are managed (Mukherjee and Ray (2006)

[23]). Applications of optimisation methods in the steel industry can be seen in Haessler (1978)

[20], Ferreira et al. (1990) [14], Vasko et al. (1992) [30], Carvalho and Rodrigues (1995) [9], Dutta

and Fourer (2001) [11] and Santos et al. (2018) [24]. Within this context, the paper proposes a

mathematical methodology to solve the slitting problem in Cortichapa, a Spanish steel company

which is part of Comercial de Laminados group.

One of the existing major problem in the steel industry is the slitting of material. The slitting

problem arises when wide steel coils are slit into narrower coils, known as strips, to meet the

requirements of the customers. This problem has been frequently investigated, such as in Coffield

and Crisp (1976) [6], Haessler (1978) [20], Sarker (1988) [26], Sweeney and Haessler (1990) [27],

Ferreira et al. (1990) [14], Vasko et al. (1992) [30] and Carvalho and Rodrigues (1995) [9].

The aforementioned problem leads to the well known family of Cutting Stock Problems (CSPs),

which is broadly studied in the literature and is also known as Trim Loss Problems (TLP) (see

Dyckoff (1985), [12]). Kantorovich (1960) [22] and Eisemann (1957) [13] are responsible for the

fundamental works of the CSP. Kantorovich’s work, first published in 1939, introduces the first

mathematical formulation for the one-dimensional TLP. Eisemann’s work defines the TLP for rolls

of material and proposes a linear programming model to solve this problem. A few years later,

Gilmore and Gomory (1961) [16] introduced a method based on duality with the aim of deter-
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mining all possible cutting patterns, overcoming the difficulty of dealing with a large number of

variables. This method used to solve the original CSP is considered as the classical approach. Con-

sequently, these authors extended and adapted the method to the specific trim problem (Gilmore

and Gomory (1963) [17]) and to the two-dimensional Cutting Stock Problem (2D-CSP) (Gilmore

and Gomory (1965) [18]). Later, in Carvalho (1998) [7] a new formulation is introduced for the

one-dimensional Cutting Stock Problem (1D-CSP) and a exact solution is found using column

generation and Branch-and-Bound techniques. On the other hand, there have been a number of

alternative approaches to solve the different variants of the problem (see Hinxman (1980) [21]

and Delorme et al. (2016) [10]). Also an extensive revision of linear programming models for bin

packing and cutting stock problems can be found in Carvalho (2002) [8].

The remaining part of this paper is organised as follows. Section 2 presents some literature

review. Section 3 introduces the problem under study. Section 4 presents the mixed integer linear

optimisation model proposed to solve the problem. In Section 5, an extensive computational ex-

periment, based on a real-world situation, is introduced. Finally, Section 6 provides the conclusions

and future research.

2. Literature review

An initial, simplified version of the problem presented in this work can be viewed more as a

generalisation of the classical 1D-CSP. The coils held in stock have a specific width and external

diameter, which are not necessarily the same for all of them, in other words, the stock is heteroge-

neous. These coils are then cut to produce strips to match the widths requested by the customers,

taking into account that the number of knives used in the cutting process is limited. In the same

way as in the 1D-CSP, the model should include constraints to ensure that the maximum number

of slits and that the total width of the coil are not exceeded.

However, in the case of our problem, the orders are not based on the number of strips required,

but rather by the total weight to be served for a specific strip width. Since not all coils share the

same diameter, the weight of a strip will depend on the selected coil from which it is obtained.

Therefore, it is impossible to know in advance the number of strips needed to meet the demand.

It should be noted that if all coils share the same diameter, the transformation between the total

weight and number of strips could be performed and we would be facing a 1D-CSP. CSPs with
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two relevant dimensions, where one is fixed (the width of the strips) and the other is variable (the

weight of the strips) are named one-and-a-half-dimensional CSP (1.5D-CSP) (Hinxman (1980)

[21]). This type of problem also differs from the 2D-CSP, where rectangles of a fixed length and

width are cut from the rectangular stock.

Several authors have considered different versions of 1.5D-CSP. Haessler (1978) [20] dealt with

the 1.5D-CSP in the metal industry. They assumed that each selected coil should be completely

processed and proposed a heuristic procedure that would sequentially satisfy the requirements

of each order, while controlling both trim losses and slitter changes. Saraç and Özdemir (2003)

[25] proposed a genetic algorithm to solve a multi-objective mathematical model for the 1.5D

assortment problem. Gasimov et al. (2007) [15] presented a 1.5D cutting stock and assortment

problem which involved determining the number of different widths of the rolls in stock and the

cutting patterns used. They propose a new multi-objective mixed integer linear programming

model and an equivalent nonlinear version. A detailed survey of 1.5D-CSP’s from 1965 to 1990

can be found in Sweeney and Paternoster (1992) [28].

The problem addressed in this paper also includes additional differences relative to the 1D-CSP.

These include certain requirements, which should be fulfilled by the products that are ordered, such

as the maximum diameter allowed for the strips being supplied. In many instances, the maximum

diameters allowed for the orders are smaller than the diameter of the coils in stock. When this

occurs, slitting the coils is not sufficient to meet these requirements so additional cross-cuts are

necessary to reduce the diameter. These cross-cuts are guillotine cuts that cross the entire width

of the coil from one edge to the other. This reduces the diameter of the coil and the strips

obtained from it, to either by half or by a third and so forth, depending on the number of cross-

cuts performed. Although the problem considers cross-cuts, it cannot be regarded as a 2D-CSP,

since the length of the strips is not pre-set and it implies a continuous decision variable in the

mathematical model.

Another important characteristic of our problem that differentiates it from the classic CSP, is

the assortment of large objects. The coils held in stock are strongly heterogeneous. According to

the extended typology of Wäscher et al. (2007) [31], our problem can be classified as a residual

cutting stock problem (RSCP). Gradisar et al. (1999) [19] argue that a traditional pattern-oriented

approach is possible only when the stock is of the same size or of several standard sizes, thus
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inappropriate for this type of problem. There is a need to use item-oriented approaches, which

are characterised by treating each item to be cut, individually. Therefore, we propose an item-

oriented solution based on a mixed integer programming model. In this regard, other item-oriented

approaches have been studied in the literature. For example, Gradisar et al. (1999) [19] proposes

a Sequential Heuristic Procedure to solve the problem of reducing trim losses in one-dimensional

stock cutting, when all stock lengths are different.

As a consequence of the manner in which the coils are processed and cut, there is a wide

variety of sizes held in stock. When the coils are cut into the exact number of strips required,

this may result in a large number of strips that are not assigned to any specific order (these are

the leftovers of the cutting process). As stated in Tomat and Gradi (2017) [29] the existence of

leftovers is common during the cutting process. If they are greater than a certain threshold, they

are considered as usable leftovers (UL) and are returned to the stock to be used for future orders.

This problem is known as the Cutting Stock Problem with Usable Leftovers (CSPUL) (Cherri

et al. (2009) [2]). In this respect, several papers have previously dealt with UL. In Coelho et al.

(2017) [5] the possibility of generating standard pieces from the leftovers during the cutting process,

is considered to reduce waste material. In Abuabara and Morabito (2008) [1] two mixed integer

programming formulations are presented to deal with a one-dimensional cutting stock problem that

arises in the manufacturing of agricultural light aircraft. Both models minimise the total trim loss

considering the possibility of generating leftovers for future reuse. As in the CSP, the CSPUL can

be classified as 1D, 1.5D and 2D. Cherri et al. (2012) [3] consider the 1D-CSPUL where the UL are

kept for future use, prioritising the use of leftovers compared to the standard pieces held in stock.

A survey on the 1D-CSPUL can be seen in Cherri et al. (2014) [4]. Therefore, we consider the

leftovers of the process to be usable if specific conditions are met and are preferred to as opposed

to obtaining scrap.

This paper studies the problem of the 1.5 dimensional residual cutting stock with usable left-

overs (1.5D-RCSPUL), where cross-cuts are permitted to reduce the diameter of the resulting strips

and knives constraints are considered. The stock consists of coils of different sizes containing left-

overs from previous cutting processes. We developed a mixed integer linear programming model

for this problem taking into account two main goals, which are related to the leftovers generated

in the process, and the precision carried out when serving the customer’s orders. Insofar as we are
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aware, no such problem has been previously discussed. Furthermore, our methodology has been

validated by the company that proposed the problem, and it has significantly improved its current

planning operation.

Table 1 presents a summary of the main characteristics and solution methods studied in the

references that have been cited. In the table, the type of industry is specified only where the papers

mention it, the rest could be applied to a wide range of them. The check mark “X” refers to a

defined problem characteristic. It should be noted that the problem characteristic is undefined

for the cells marked with “-”. Finally, in the Modelling approach and Solution approach columns,

MILP/MINLP represent mixed-integer linear/nonlinear programming; ILP represents integer lin-

ear programming; LP represents linear programming; DP represents dynamic programming and

“Survey” indicates that it is a survey type research.

3. Problem description

The production planning of steel strips is mainly based on the customer demand. Customers

place orders for the strips, by specifying a certain width and a total weight. A combination of

knives is set in the slitting machine (one knife more than the number of strips obtained). The

strips are slit from the coils in stock which, besides new coils, also include leftovers from older

cutting processes. Once a coil is selected to be processed, it is unwound in the slitting machine,

which is equipped with a variable and limited number of knives to perform the corresponding cuts.

While the slitting process is carried out, the coil is rewound, and a set of strips is obtained.

Figure 1a represents an unwound coil, where four knives have been set into the slitting machine

to obtain three different strips, which is represented by the grey area. Knives at both extremes

are necessary in order to keep the coil uniform, therefore, a minimum edge trim will always be

required. The material on the outer sides of the extreme knives, which is illustrated by the black

area in the figure, represents the leftovers of the process. These leftovers are usable and kept in

stock when their width and weight are greater than a certain threshold. Whenever this occurs they

are referred to as retails, otherwise, the leftovers are considered as scrap. When the width of the

order perfectly matches the width of the coil, the coil is served as a complete strip so an edge trim

is not required, since no slits are performed, as shown in Figure 1b.

6



Table 1: Literature review

Characteristics

Literature Dimension Industry Slitting Two-stage Usable

leftovers

Residual

stock

Modeling

approach

Solution approach

Eisemann (1957) 1D - - - - - LP General LP solver

Kantorovich (1960) 1D - - - - - LP Method of resolving multipliers

Gilmore and Gomory (1961) 1D - - - - - ILP Column generation

Gilmore and Gomory (1963) 1D Paper - - - - ILP Column generation

Gilmore and Gomory (1965) 2D - - - - - ILP Column generation

Coffield and Crisp (1976) 1D - X - - - LP LP solver (MPS/360)

Haessler (1978) 1.5D Metal X - - - MILP Heuristic (sequential generation of

patterns)

Hinxman (1980) 1D,1.5D,2D - - - - - Survey Survey

Dyckhoff et al. (1985) 1D,1.5D,2D - - - - - Survey Survey

Sarker (1988) 1D - X - - - DP Dynamic progr.

Ferreira et al. (1990) 1.5D Steel X X - - MINLP Heuristic

Sweeney and Haessler (1990) 1D Paper X - - - ILP Two-stage heuristic

Sweeney and Paternoster (1992) 1D,1.5D,2D - - - - - Survey Survey

Vasko et al. (1992) 1.5D Steel X - - - MILP Heuristic (MINSET)

Carvalho and Rodrigues(1995) 1.5D Steel X X - - LP Column generation

Carvalho (1998) 1D - - - - - ILP Column generation and

Branch&Bound

Gradisar et al. (1999) 1D - - - - X MILP Sequential Heuristic (SHP)

Dutta and Fourer (2001) - Steel - - - - Survey Survey

Carvalho (2002) 1D - - - - - LP Survey

Saraç and Özdemir (2003) 1.5D - - - - - MILP Implicit enum. / genetic heuristic

Mukherjee and Ray (2006) - Metal - - - - Survey Survey

Wäscher et al. (2007) 1D,2D - - - - X Survey Survey

Gasimov et al. (2007) 1.5D Corrugated box X - - - MILP, MINLPConic scalarization

Abuabara and Morabito (2008) 1D Metal - - X - MILP General LP solver

Cherri et al. (2009) 1D - - - X X - Residual heuristics

Cherri et al. (2012) 1D - - - X X ILP Heuristic (RGR)

Cheri et al. (2014) 1D - - - X - Survey Survey

Delorme et al. (2016) 1D - - - - - Survey Survey

Coelho et al. (2017) 1D - - - X X ILP Two residual heuristics

Tomat and Gradisar (2017) 1D - - - X X MILP Heuristic search process

Santos et al. (2018) 1D Steel - - - - MILP Two heuristics

This research 1.5D Steel X - X X MILP MIP solver (GUROBI 9.0.2)

Particular restrictions in the problem

In the case of this company, there are particular restrictions imposed by the customers that

affect the way their orders need to be served. These restrictions include the maximum weight

of the strip and the maximum external diameter allowed. It should be noted that given some

properties such as width, thickness, density and internal diameter of the strip, the weight of a strip

can be obtained from its external diameter. Hence, both requirements can be given in terms of
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Stock Customers Scrap

Scrap

Retails

(a) Slit coil producing different strips

Stock Customers Scrap

(b) No slits performed

Figure 1: Different possibilities to allocate orders to coils

a maximum allowed weight for the strips where the most restrictive one is considered. For each

order, the maximum allowed weight for the strips, as well as the size of the coil, would define the

number of strips served.

In order to reduce the diameter, and consequently the weight of the strips to meet the customers’

requirements, it is possible to make one or more guillotine cross-cuts with a shear blade. These

cuts affect all the strips assigned to the coil and must ensure that each resulting strip has a certain

weight which lies within the limits set by the customer. These limits may vary from customer to

customer. For this reason, it is worth noting that the knives cannot be redirected after a cross-cut

remaining the cutting pattern the same. Figure 2 presents an example of how a cross-cut reduces

the external diameter or weight of the finished strips. In Figure 2a the external diameter of the

finished strips is greater than those in Figure 2b where a cross-cut has been performed.

Each time a cross-cut is carried out, a decision must be made on whether to continue cutting or

stop the cutting process. In the latter case, the remaining part of the coil is rewound and kept in

stock for future cutting processes. It should be noted that this partial rewound process produces

coils in stock with a variety of external diameters (see Figure 2c).

Compatibility of stock and orders

An additional feature that complicates the problem lies in the quality requirements requested by

the customer, regarding the product being served. The company handles more than 20 parameters

that define the technical characteristics of each coil, the type of material, its thickness, etc. For
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Stock Customers Scrap

(a) Strips obtained without cross cuts

Stock Customers Scrap

(b) Strips obtained when a cross cut is made when slitting process continues

Stock Customers Scrap

(c) Strips obtained when a cross cut is made stopping the slitting process

Figure 2: Example of strips obtained

each of these parameters, the customer requests specific values and, in some cases, small tolerances

are allowed. For example, the type of material has to match both the order and stock. However,

if the order requires a thickness of 2 mm with a tolerance of 0.1 mm, the thickness of the stock

could range between 1.9 mm and 2.1 mm. These requirements should be considered in order to

determine the set of compatible coils for each order. Nevertheless, since the tolerances are so small,

the costs involved for the company are fairly insignificant.

These compatibility requirements create a problem that is more difficult to solve, as the same

coil can be used to serve orders with different characteristics. As a result, the problem cannot be

easily separated into several sub-problems. An illustrative example is shown in Figure 3, where any

R type coil is compatible with order 1, but not with order 2. However, the M-coil is compatible

with both orders 1 and 2. This situation can arise, for example, when customers allow their orders

9



Order 3

Order 2

Order 1

Type

R

R

M

G

G

G

B

B

Figure 3: Illustrative example of compatibility between orders and stock

to be served with better quality products than requested, or with a certain thickness tolerance. It

should be noted that this characteristic introduces a new difficulty: an order can be served with

coils of different densities or weights per linear metre. Therefore, converting weight to length on a

general basis for all coils is not possible and has to be carried out for each coil individually.

Cutting patterns

A number of cutting scenarios may arise, resulting in various types of cutting patterns, which

are shown in Figure 4. With regard to slitting the coil, two situations may occur: (A) the strip

width matches the coil width and, (B) the strip width is narrower than the coil width. In case A,

the coil is not slit while in case B, the coil is slit and at least two knives are needed for the slitting

machine to perform the cuts. In both cases, A and B, the coil can be fully used lengthwise (cases

A1, A2, B1 and B2 in Figure 4) or partially used (cases A3 and B3 in Figure 4). In cases A3 and

B3, the remaining part without slits is rewound and restocked. One or more guillotine cross-cuts

may be performed in order to meet the maximum strip weight requirements (cases A2, A3, B2 and

B3).

Objective and problem hypotheses

The company pursues the following goals, namely:

� Maximise the utilisation of each coil.

The company currently uses about 50-60% of the weight of the coils to meet demand. The

leftovers of the cutting process are 1) discarded if their weight or width are not large enough;

2) stocked for future use; or 3) used to prepare strips for expected future orders. Based on
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Stock Customers Scrap Stock Customers Scrap

Figure 4: Different cutting patterns considered

past record data, the company can forecast future demand and then seek to make efficient use

of the unused pieces by anticipating future demand. These three situations imply economic

costs to the company that include the generation of scrap, inventory costs and the risk of

producing non-demanded strips that would cause an increase in the stock.

In order to improve the current operation process, the model includes a penalisation for the

weight of the leftovers. This penalisation is greater for scrap than for retails. It should be

noted that the third option, that of anticipating possible future demand, is only carried out

by the company as a last option to reduce scrap, and it is not contemplated in the model.

� Adjust the weight served to the real demand.

Owing to the way the company operates, it is very difficult to serve the exact amount of

product that each customer has requested. Currently, the company works with a ±20%

tolerance; this seems reasonable for the company since most of the customers are regular ones
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deviation (%)
-8 -6 -4 -2 0 2 64 8

penalisation

][

convex penalisation
linear approximation

Figure 5: Penalisation of deviation from actual weight for each order

and, therefore, part of the demand can be transferred to other days, usually at a cost in the

form of a discount. To reduce this deviation, the objective function includes a penalisation.

A non-linear (convex) function is used which results in larger deviations being more penalised

than smaller ones. This convex function can be approximated by a piece-wise linear function

without the need of binary variables. More specifically, we have considered two intervals for

the approximation: up to a certain level, deviations are acceptable as it is rather difficult to

meet the exact weight ordered for all of the customers, but for deviations over the maximum

desired deviation, a greater penalisation is imposed. Either way, a maximum allowed deviation

is established. Figure 5 shows an example, where a deviation up to 4% of the weight ordered

is less penalised than a deviation from 4% to 8%. The latter is the maximum deviation

allowed.

In summary, the problem under study considers the following hypotheses:

� Customers place their orders by specifying a certain width and total weight. Neither the

number of strips nor their weight are predefined.

� All strips supplied should meet the customer’s requirements in terms of a maximum permitted

weight.

� The existing stock consists of coils with different sizes, and includes the retails from former

cutting processes.

� Compatibility requirements imply that different types of coils are considered for a given order.
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� Both slits and guillotine cross-cuts are considered.

� After a cross-cut, the reconfiguration of knives is not allowed. Either the rest of the coil is

cut with the same configuration of the knives or it is rewound and kept in stock.

� A minimum edge trim is required when slitting the coil.

� Leftovers are divided into retails (usable leftovers) and scrap.

� Customer’s orders have to be fulfilled. A maximum allowed deviation on the weight served

with respect to the requested weight is considered.

4. Mixed Integer Linear optimisation model

Below, a Mixed Integer Linear optimisation model to solve the problem is presented.

4.1. Notation

� O, set of customer’s orders. The following information is given for each order o ∈ O:

ao, width (m) of strips.

bo, required weight (kg).

bo, maximum weight (kg) allowed for each single strip of the order.

uo, u
d
o , maximum absolute deviation on the required weight (kg) that is permitted and de-

sired, respectively.

� C, set of coils in stock. For each coil c ∈ C the following data are known:

Ac, width (m).

Bc, weight (kg).

Lc, length (m).

Lc, Lc, for partially used coils, minimum and maximum length (m) used from the coil, re-

spectively. Lc is such that it guarantees that the rest of the coil can be rewound and

kept in stock.

Dc, weight (kg) per m2. It depends on the density and thickness of the coil.
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Jc, maximum number of knives.

Jc = {1, . . . , Jc − 1}, index set for the slits performed.

Oc, set of orders that are compatible with the coil.

� Parameters for operation configuration:

r, minimum edge trim required for quality purposes.

a, b, minimum width and weight required for a trim waste to be reusable, respectively.

� Objective function:

q, qd penalisation for the allowed and desired deviation of the weight served with respect to

the required weight, respectively. Note: q > qd.

Decision variables

αc = 1, if coil c is used, 0 otherwise, c ∈ C.

δT
c = 1, if coil c is fully used lengthwise, 0 otherwise, c ∈ C.

δP
c = 1, if coil c is partially used lengthwise, 0 otherwise, c ∈ C.

γc0 = 1, if coil c is used without slitting, 0 otherwise, c ∈ C.

γcj = 1, if the j-th slit is performed in coil c, 0 otherwise, c ∈ C, j ∈ Jc : j > 0.

µocj = 1, if order o is assigned to the j-th slit of coil c, 0 otherwise, c ∈ C, o ∈ Oc, j ∈ Jc.

θc = 1 if trim waste of coil c is reusable, 0 otherwise, c ∈ C.

βc, number of guillotine cross-cuts made in the used part of coil c, c ∈ C. It should be noted

that this variable does not count the last cross-cut made if the coil is partially used, in other

words, it only counts the cross-cuts made to assure that the weights of the strips are less

than the maximum allowed. Observe Figure 2b where β = 1 and Figure 2c where β = 0.

xc, used length of coil c, c ∈ C.

vocj , length of the strip of order o obtained from the j-th slit made in coil c, c ∈ C, o ∈ Oc, j ∈ Jc.

u+
o , u

−
o , excess and lack of weight served for order o, o ∈ O.
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Lc

Ac

Lc
Lc

xc

Figure 6: Parameters referred to a given coil

ud+
o , ud−

o , excess and lack of weight served for order o within the maximum desired deviation,

o ∈ O.

yc, width of the leftovers of coil c ∈ C which is broken down in the sum of yr
c, for retails and ys

c,

for scrap, c ∈ C.

zr
c, z

s
c, weight of the retails and scrap of coil c, c ∈ C.

Figure 6 shows some elements of the notation on an unwound coil and Table 2 indicates how the

values of the variables determine the different cutting patterns described in Figure 4.

Fully used lengthwise Partially used

δTc = 1, xc = Lc δPc = 1, Lc ≤ xc ≤ Lc

(1) No cross-cut (2) Cross-cut (3) Cross-cut

(A) No slit γc1 = 0, βc = 0 γc1 = 0, βc > 0 γc1 = 0, βc ≥ 0

(B) Slit γc1 = 1, βc = 0 γc1 = 1, βc > 0 γc1 = 1, βc ≥ 0

Table 2: Relationship between variables and the different cutting patterns for a coil c

4.2. Mathematical formulation

Objective function

The objective function is a weighted sum of three elements:

min
{
w1

(∑
c∈C

(
Bcαc−DcAcxc

)
+ zr

c

)
+w2

∑
c∈C

zs
c +w3

∑
o∈O

(
q(u+

o +u−o ) + (qd− q)(ud+
o +ud−

o )
)}

(1)

where w1, w2 and w3 represent the weights assigned to each component:

1. Usable leftovers or retails. There are two kinds of usable leftovers: the rewound coils obtained

from the partially used coils and retails that appear when a coil is not fully used widthwise.
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2. Scrap: Leftovers whose weight and/or width are below a certain threshold.

3. Difference between the weight served and the weight that is actually ordered by each customer.

Two different penalisations are considered: qd for deviation within the desirable limits and q

for the excess deviation over these desirable limits.

Constraints

1. Cutting patterns: Constraint (2) states, for each used coil, whether it is served with or

without slitting. Constraint (3) forces not to make a slit if the previous slit has not been

performed, in other words, introduce an order in the slits. Constraint (4) states, for used coils,

whether they are completely or partially slit. Constraint (5) guarantees that no guillotine

cross-cuts are performed on unused coils.

γc0 + γc1 = αc ∀c ∈ C (2)

γcj ≤ γcj−1 ∀c ∈ C, j ∈ Jc : j > 1 (3)

δT
c + δP

c = αc ∀c ∈ C (4)

βc ≤ Gcαc ∀c ∈ C, (5)

Where Gc is an upper bound of the number of guillotine cross-cuts in coil c.

2. Assignment of orders to strips: Constraint (6) assigns exactly one order to each strip (it

should be noted that an order can be assigned to one or more slits). Constraint (7) ensures

that the width of each coil is not exceeded. Constraint (8) ensures a minimum edge trim in

slit coils. ∑
o∈Oc

µocj = γcj ∀c ∈ C, j ∈ Jc (6)

∑
j∈Jc

∑
o∈Oc

aoµocj + yc = Acαc ∀c ∈ C (7)

2rγc1 ≤ yc ≤ Acγc1 ∀c ∈ C (8)

3. Bounds on the used length of the coils: Constraint (9) forces the used length of the coils

to be equal to the total length of the coil when it is completely slit and between the given

bounds when it is partially slit.

Lcδ
T
c + Lcδ

P
c ≤ xc ≤ Lcδ

T
c + Lcδ

P
c ∀c ∈ C (9)
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4. Length of the strips ordered: Constraint (10) allows to assign a length only to the slits

assigned to the orders. Constraint (11) guarantees the length of all the strips in a coil to be

equal to the used length of the coil.

Lcµocj ≤ vocj ≤ Lcµocj ∀c ∈ C, o ∈ Oc, j ∈ Jc (10)

0 ≤ xc − vocj ≤ Lc(1− µocj) ∀c ∈ C, o ∈ Oc, j ∈ Jc (11)

5. Guillotine cross-cuts: Constraint (12) computes the number of guillotine cross-cuts needed

in coil c to keep the weight of the strips lower than the maximum allowed for each order

assigned to this coil.

(Dcao)vocj ≤ bo(βc + 1) ∀c ∈ C, o ∈ Oc, j ∈ Jc (12)

6. Demand: Constraints (13) –(14) compute the lack or excess weight served to each order.

∑
c∈C:o∈Oc

∑
j∈Jc

(Dcao)vocj − u+
o + u−o = bo ∀o ∈ O (13)

ud+
o ≤ u+

o , u
d−
o ≤ u−o ∀o ∈ O (14)

7. Leftovers: When leftovers are rewound for further use, they are considered as usable. Alter-

natively, the material is discarded and considered as scrap. When leftovers are usable, there

is always a weight that represents the minimum edge trim required which is considered as

scrap. Thus, the width of the leftovers can be divided into usable (retails) and non-usable

(scrap) parts (15). In an analogous manner, the weight of the leftovers can also be divided

into usable and non-usable parts (16). Constraints (17)-(20) assure that if leftovers are us-

able, their width and weight should be at least the minimum established. Failure to comply

with at least one of these conditions will result in the leftovers as being considered scrap.

Finally, constraint (21) states that leftovers only appear when the coil is slit.

yc = yr
c + ys

c ∀c ∈ C (15)

(DcAc)xc −
∑
o∈Oc

∑
j∈Jc

(Dcao)vocj = zr
c + zs

c ∀c ∈ C (16)

aθc ≤ yr
c ≤ Acθc ∀c ∈ C (17)

bθc ≤ zr
c ≤ Bcθc ∀c ∈ C (18)
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rθc ≤ ys
c ≤ rθc + sc(1− θc) ∀c ∈ C (19)

(DcrLc)θc ≤ zs
c ≤ (DcrLc)θc +Bc(1− θc) ∀c ∈ C (20)

θc ≤ γc1 ∀c ∈ C (21)

Constant sc in constraint (19) is an upper bound of the width of the leftovers of coil c to

be considered as scrap. It can be computed as the maximum between a and the width

corresponding to the leftovers of weight b:

sc = max
{
a,

b

DcLc

}
8. Variables’ domain:

αc, δ
T
c , δ

P
c , θc ∈ {0, 1} ∀c ∈ C (22)

xc, yc, y
r
c, y

s
c, z

r
c, z

s
c ∈ R+

0 ∀c ∈ C (23)

βc ∈ Z+
0 ∀c ∈ C (24)

γcj ∈ {0, 1} ∀c ∈ C, j ∈ Jc (25)

u+
o , u

−
o ∈ [0, uo] ∀o ∈ O (26)

ud+
o , ud−

o ∈ [0, ud
o ] ∀o ∈ O (27)

µocj ∈ {0, 1} ∀c ∈ C, o ∈ Oc, j ∈ Jc (28)

vocj ∈ R+
0 ∀c ∈ C, o ∈ Oc, j ∈ Jc (29)

5. Computational experience

The model presented above has been tested using real data provided by Cortichapa, a Spanish

steel company interested in improving the planning of steel strip production to meet their cus-

tomers’ orders, and also reducing the leftovers generated during the cutting process. The company

holds a permanent stock level of 30,000 tonnes with more than 400 different types of products, and

a service and delivery capacity of up to 1,000 tonnes per day, for more than 100 customers.

5.1. Case study and current operation

In order to carry out the computational research, the model was tested using real data (available

stock and orders) for 11 working days in 2019. Additionally, we were provided with the solution
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Table 3: Main characteristics of instances

Instance I01 I02 I03 I04 I05 I06 I07 I08 I09 I10 I11

# orders 15 7 14 9 14 11 8 7 7 13 10

Total required weight (t) 115 104 83 90 112 97 74 92 123 123 61

# compatible coils 380 76 222 175 193 271 65 207 154 180 68

Weight of compatible coils (t) 5,192 1,085 2,972 2,486 2,740 4,024 954 2,027 2,442 1,941 999

applied by the company which was compared with the one provided by the model. The actual

planning of the cutting process takes several hours and very often, there are situations where the

company cannot find a way to complete and fulfil all its orders in one day. In other words, the

weight served in one day is not within the permitted deviations from the total weight required.

Consequently, those orders remain open for the next day. In addition, as mentioned before, the

anticipation of future demand is practised by the company (a posteriori) by planning make-to-stock

orders to complete the coils used. In order to validate the model, and at the company’s request, the

records only include confirmed orders that have been completely fulfilled, thereby allowing there

to be a comparison between both solutions.

Table 3 reports the main characteristics of the instances tested: number of orders, total weight

required in tonnes, number of compatible coils in stock and their total weight in tonnes. Addi-

tionally, for each instance, Figure 7 shows the distribution of the weights of the orders (7a) and

the distribution of the weights of the compatible coils in the stock (7b). It should be noted that

instances I03 and I11 have mainly small orders and little variability, while the variability in the

weight of the order is greater for instances I02, I09 and I10. Regarding the weight of the coil, the

instances are more homogeneous.

At the beginning of the day, the company has around 5000-6000 coils available in stock, with

thicknesses that vary from 0.48 mm to 6 mm. The thickness is directly related to the maximum

number of knives that can be configured in the slitting machine (varying from 4 to 18 knives).

Some customers allow a certain degree of tolerance in the thickness; this tolerance can range from

0.05 mm to 0.21 mm. The coils held in stock have an external diameter that may reach 5500 mm,

providing that the maximum diameter established by the customer does not exceed 2000 mm, it

would be necessary to include cross-cuts to ensure that the strips served do not exceed this limit.

Another aspect that may imply cross-cuts is the maximum weight per strip that varies from 140 to
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Figure 7: Distribution of order and compatible sizes

16000 kg. Finally, the widths of the coils vary from 77 mm to 1500 mm, while customers demand

strips that range from 36 mm to 1500 mm.

Table 4 presents the main performance indicators of the solution currently implemented in the

company. In each instance, the number of coils used in the solution and their total weight in kg

are indicated, together with the coils served, the retail weights and the weights of the scrap. In

addition, the percentage that each weight represents over the total weight used is also indicated.

Leftovers are considered retail when their widths and weights are greater than 100 mm and 500

kg respectively. The Slit and Cross columns provide the number of slits performed on average per

coil, and the total number of guillotine cross-cuts made in the solution, respectively. The Rewound

column provides the number of coils that are rewound. Deviations up to ±20% from the required

weight are allowed and, in order to measure how the solution behaves in this matter, we define

the order accuracy as the ratio between the required weight and the served weight. In this way,

the order accuracy values over 1 indicate that the served weight is more than the required weight.

Finally, the last three columns of Table 4 report the minimum, average and maximum values of the

order accuracy obtained using the current solution established by the company. As an illustrative

example of this indicator, in instance 1, at least 84% (resp. 117% maximum) of the required weight

was served for all of the orders, the average being 101%.
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Table 4: Real operation performance indicators

Used coils Served Retail Scrap Cuts Rewound Order accuracy

Instance # Weight Weight % Weight % Weight % Slit Cross # Min Mean Max

I01 14 251340 113680 45.23 136438 54.28 1222 0.49 6 4 3 0.84 1.01 1.17

I02 8 126780 104032 82.06 22086 17.42 662 0.52 7 2 2 0.99 1.01 1.04

I03 12 217140 86416 39.80 129177 59.49 1547 0.71 4 2 0 0.98 1.04 1.18

I04 12 207130 88942 42.94 117168 56.57 1020 0.49 4 1 0 0.89 1.01 1.11

I05 14 186293 110688 59.42 73127 39.25 2478 1.33 6 8 2 0.88 1.00 1.08

I06 15 251175 98899 39.37 150746 60.02 1530 0.61 4 3 3 0.92 1.04 1.13

I07 7 147920 73395 49.62 73577 49.74 948 0.64 9 0 0 0.93 1.02 1.14

I08 17 174800 90505 51.78 83050 47.51 1245 0.71 2 0 0 0.83 1.01 1.12

I09 9 186490 114793 61.55 70562 37.84 1135 0.61 7 0 2 0.88 0.95 1.00

I10 18 227102 120210 52.93 104852 46.17 2040 0.90 4 2 7 0.81 0.98 1.06

I11 11 125652 62994 50.13 61362 48.84 1296 1.03 5 0 1 0.95 1.03 1.20

Average 12.4 191075 96778 50.65 92922 48.63 1375 0.72 5.3 2.0 1.8 0.90 1.01 1.11

5.2. Experiments

The model has been implemented using the algebraic modeling language AMPL and solved

using the MIP Gurobi v.9.0.2 optimizer in a virtual machine managed by OpenStack with 4 CPUs,

8GB RAM, Ubuntu 18.04 OS. The default Gurobi settings are used, except for the time limit,

which is set to 10 minutes. In addition, different experiments have been performed varying the

weights of the objective function: minimizing both retail sales and scrap, as well as the deviation

from the weight required for each order.

Regarding the first goal, a higher penalisation has been assigned to the scrap than to the retails,

while for the second goal; the maximum deviation allowed has been set equal to ±20%, which is

the one currently used by the company. In addition to this value, different limits have been tested

for the desired deviation: ±20%, ±10% and ±5%. In order to achieve solutions that are adjusted

as close as possible to the required limits, deviations above the required limit have been further

penalised. In particular, the values used for q and qd are 10 and 1, respectively.

Furthermore, three different weight combinations (w1, w2, w3) have been tested and are used

to penalise retails, scrap and deviation from the weight ordered, respectively, W1 = (1, 3, 2),

W2 = (1, 4, 2) and W3 = (1, 4, 3).

Each of the combinations has been tested in the set of instances presented above. Figure 8a
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Figure 8: Performance of the model for different combinations of weights and desired deviations

shows the performance of the model: the percentage of the weight served to customers over the

weight of the used coils, the percentage of the weight of the retails held in stock and the percentage

of scrap that is discarded. These data correspond to the aggregation of all the orders included in

all instances. Moreover, it can be observed that in almost all cases, more than 80% of the total

weight is served to customers, and the higher the maximum desired deviation, the more efficient

the coil usage, although the differences are not really significant. The performance of the model

for both, W2 and W3 weights, is very similar. It is worth noting that the penalisation set W1

provides an increase of 1% in the weight served together with an increase of 1% in scrap.

The distribution of the order accuracy is represented in Figure 8b. Each box-plot shows the

distribution of the accuracy obtained in all orders of the instances. As would be expected, one can

observe that in the three penalisation sets used, the variability of the deviations is reduced as is

the maximum desired deviation. Although the differences are not very relevant, we have decided

to discard the penalisation set W1 since it increases the scrap, which is contrary to one of the goals

of the company. It is worth pointing out that in all cases, very few orders are outside the desired

limits, although it can be observed that the penalisation set W3 is slightly better adjusted than

W2.

Therefore, taking into account the information in Figure 8 and although the differences are not

very distinguishable, we will use penalisation set W3 and a maximum desired deviation of ±5%

for the remaining analysis.
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Table 5: Computational statistics: Model dimensions and solution

Instance # cons. # vars. # int.vars. # 0-1 vars. time (s) ZIP gap (%)

I01 57590 30077 380 17510 264.39 34501.3 0.00

I02 8233 4378 76 2560 1.51 17484.1 0.00

I03 39154 20404 222 11388 600.19 27811.7 10.24

I04 28045 14650 175 8242 275.53 15310.5 0.00

I05 23984 12644 193 7489 10.28 39692.5 0.00

I06 39503 20669 271 11918 125.63 40634.8 0.00

I07 12215 6383 65 3482 600.21 20654.3 9.28

I08 40573 21058 207 11688 600.23 7457.3 23.63

I09 23733 12402 154 7114 126.60 20167.0 0.00

I10 20090 10659 180 6208 3.20 80280.3 0.00

I11 8760 4632 68 2736 1.74 68563.4 0.00

Table 5 shows a number of statistics on the computational performance of the model. The

following information is presented for each instance: the number of constraints, the variables, the

integer and binary variables, the value of the objective function within the best feasible solution

provided, and the optimality gap for this solution. It is possible to observe that in eight of the

instances, the model provides an optimal solution, and in only three instances, I03, I07 and I08,

the optimality gap is greater than 9%. It is worth noting that, as we will observe below, in instance

I08, there is an optimality gap greater than 23%, 98% of the weight of the used coils is served to

the customers and the order accuracy varies between 0.99 and 1.01. Therefore, it appears that the

optimality gap is quite large because of the quality of the lower bound, while the proposed solution

is close to the optimal one. The model was run for two hours for each instance, and obtained a

gap of 0% for instances I03 and I07 with the same objective value, whereas the gap of instance I08

was reduced to 7% and the best known solution improved 5%.

5.3. Interpretation and analysis of the obtained results

Table 6 provides a number of statistics on the quality of the solution after solving the proposed

mathematical model in the same terms as in Table 4. It also indicates the number and weight of

coils used, the coils served, the retails and the scrap, including the percentage that each of these
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Table 6: Model performance indicators

Used coils Served Retail Scrap Cuts Rewound Order accuracy

Instance # Weight Weight % Weight % Weight % Slit Cross # min mean max

I01 18 140732 115587 82.13 22562 16.03 2583 1.84 8 1 2 0.99 1.00 1.02

I02 10 118173 103445 87.54 14143 11.97 585 0.49 6 3 1 0.99 1.00 1.00

I03 10 102744 83330 81.10 17119 16.66 2295 2.23 6 4 4 0.98 1.00 1.05

I04 11 101970 89874 88.14 11329 11.11 767 0.75 9 0 2 0.98 1.00 1.03

I05 20 141963 111580 78.60 28280 19.92 2103 1.48 6 7 3 0.92 0.99 1.04

I06 17 130054 97289 74.81 29586 22.75 3178 2.44 4 3 5 1.00 1.00 1.02

I07 7 91032 73982 81.27 16645 18.28 406 0.45 8 1 2 0.96 1.00 1.05

I08 13 93922 91794 97.73 578 0.62 1550 1.65 9 0 0 0.99 1.00 1.00

I09 13 138591 123634 89.21 13159 9.49 1798 1.30 6 1 1 1.00 1.00 1.01

I10 19 194924 123098 63.15 69631 35.72 2195 1.13 5 1 3 0.96 1.00 1.02

I11 16 113373 60308 53.19 50016 44.12 3049 2.69 5 5 6 0.88 0.99 1.05

Average 14.0 124316 97629 78.53 24823 19.97 1864 1.50 6.0 2.4 2.6 0.97 1.00 1.03

weights represents over the total weight used, the number of slits and cross-cuts performed and,

finally, the minimum, the average and the maximum order accuracy achieved.

Figure 9 provides a graphical comparison between the performance of the solution proposed by

the mathematical model and the solution which is currently implemented in the company. On the

other hand, Figure 9a shows the utilisation of the coils for both solutions. On average, under the

solution that is currently applied, 52.3% of the total weight is used to serve the orders, 47% of it

is retails and the remaining 0.7% is considered as scrap. On the other hand, under the solution

proposed by the model, 79.7% of the total weight is served, 18.8% is stocked as retails and the

remaining 1.5% is considered as scrap. Although the amount of scrap increases from 0.7% to

1.5%, there is a more efficient use of the coils, since the model manages to reduce the weight of

the retails to one third. This implies a direct reduction in the management costs of these retails,

and, consequently, a reduction in the management costs in the warehouse. In general terms, the

mathematical model aims at increasing the use of the coils by using the available stock, while at

the same time, reducing it since the amount of retails is also reduced.

Figure 9b shows the distribution of the order accuracy for both solutions. The horizontal band

with a white background corresponds to the maximum desired deviation of 5%. It is evident

how clearly the model provides solutions as most of the orders are within these limits (except for
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Figure 9: Comparison between model solution and the solution currently implemented

instances I05 and I11 which have an order accuracy below 95%). In addition, it can be observed

that in the boxplot boxes (representing the distance between the first and third quartiles), the

variability of the model solution is far lower since the boxes are much narrower and the whiskers

considerably shorter. In other words, using the mathematical model, is possible to provide solutions

that are better suited to the weight required by the customers with a consequent saving in material.

Finally, Figure 10 shows a scatter plot indicating the number of used coils along with their

weight, for both, the currently used and the model solutions. Each instance is represented by two

points connected by an arrow. One point for the current solution and the other for the model

solution. A trend line is also shown, representing the relationship between the number of coils and

their weight. It can be observed that in all cases, the weight of the used coils is lower in the solution

proposed by the model (downward arrows) and there is also a clear tendency to use more coils in

this solution (rightward arrows): there are only three cases where the current solution uses more

coils. In addition, the dotted arrow shows the average values in terms of used weight and number

of coils for the current and model solutions. On average, the number of coils increases while the

weight used decreases. Therefore, it can be determined that the model proposes solutions where

the coils are smaller. These small coils often correspond to retails from previous days which are

more difficult to allocate, since the company tends to use large coils on a daily basis, which provides

more flexibility in the planning. It is worth noting that this strategy will imply an increase in the
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Figure 10: Number and weight of the used coils in the current and model solutions

stock, contrary to the solutions provided by the model which optimises the management of the

available stock more efficiently.

5.4. Extended computational experiment

In order to assess the limits of the model, larger instances have been generated and solved by

increasing the number of orders and coils in stock. Instances with 15, 30, 60, 90 and 120 orders

are created and for each orders’ size two different sets of stock are generated resulting in a total of

ten different scenarios. For each scenario, 5 different instances are created by randomly selecting

orders from a list of orders of the company and coils from the available stock, taking into account

stock-orders compatibility. Therefore, the computational experiment includes 50 instances. The

computational time limit for solving each instance has been set to 20 minutes.

Table 7 reports the average values obtained for each scenario. The following data are reported:

the number of orders and coils, the dimensions of the model (number of constraints, variables,

integer and binary variables), the computational time in seconds (time), the value of the objective

function for the best known feasible solution (ZIP ) and the optimality gap given in % (gap). Last

columns present the proportion of the weight of the coils used to serve orders, retails and scrap

(minimum, mean and maximum values of the instances solved for each scenario are reported).

Regarding the performance of the model, it may be observed that as the size of the instances

increases so does the optimality gap. Furthermore, in scenarios 9 and 10 only 4 and 3 out of

5 instances, respectively, were solved within 20 minutes. These results suggest that for larger

26



Table 7: Computational statistics: Average values for each scenario

Scenarios Model dimensions Performance Served (%) Retail (%) Scrap (%)

n orders coils cons. vars. int.vars. 0-1 vars. time ZIP gap min mean max min mean max min mean max

1 15 250 36732 19241 250 11025 641.1 66880 1.4 65.5 73.6 81.2 17.4 25.3 33.4 0.7 1.1 1.4

2 15 500 65137 34198 500 19958 561.1 43894 0.6 78.8 80.6 83.3 15.0 18.1 20.1 0.8 1.3 2.3

3 30 500 74906 39224 500 22338 968.9 145884 2.1 72.4 75.7 81.0 17.5 23.2 26.9 0.8 1.1 1.5

4 30 750 109974 57589 750 32655 985.5 118786 5.6 66.3 73.5 84.4 14.6 25.5 32.7 0.8 1.0 1.2

5 60 750 128897 67334 750 37320 1200.0c 266420 6.6 71.0 73.6 76.5 22.6 25.4 28.0 0.9 1.0 1.1

6 60 1000 167540 87518 1000 48553 1200.0c 239925 7.6 70.4 76.4 81.5 17.1 22.4 28.4 0.7 1.2 1.4

7 90 1000 205745 107011 1000 58059 1200.0c 323209 15.6 75.8 78.4 80.9 18.1 20.4 23.0 1.0 1.2 1.5

8 90 1500 311683 161911 1500 87799 1200.0c 296803 17.3 76.6 78.9 80.8 18.4 20.1 22.4 0.8 1.0 1.3

9a 120 1500 371608 192450 1500 102540 1200.0c 457106 28.5 76.5 78.4 79.5 19.2 20.5 22.6 0.9 1.1 1.3

10b 120 2000 464941 240958 2000 129066 1200.0c 512079 42.1 72.2 76.9 80.1 18.7 21.7 26.1 1.2 1.4 1.8

Average 76.6 22.3 1.1

a 4 out of 5 instances were solved within 20 minutes. c No instance was solved to optimality within 20 minutes.

b 3 out of 5 instances were solved within 20 minutes.

problems the model will need more time to obtain a feasible solution and other strategies would

have to be investigated to obtain good feasible solutions in reasonable time, such as heuristic or

metaheuristic approaches.

However, if we look at the quality of the solution, we may highlight that the utilisation of the

coils is similar in all scenarios, even for those with a large optimality gap. On average, 76.6% of

the coils is used to serve orders, 22.3% is intended for retails and only 1.1% is considered scrap.

This distribution is similar to the one obtained in the previous instances (see Table 6).

6. Conclusions and future work

A mixed integer linear optimisation model has been presented to address the specific cutting

stock problem in a European Steel Company. The model has been validated with real data provided

by the company, and has succeeded in surpassing its current performance. One of the main benefits

of this approach is the reduction of the response time.

Mathematical optimisation is able to provide solutions which are difficult to analyse manually.

Moreover, mathematical optimisation avoids mistakes caused by human errors, such as scheduling

wrong quantities, which imply higher costs for the company. In technical terms, the model provides

us with solutions that increase the size of each used coil that is effectively sent to the customers, and

decrease the retails accordingly. This fact represents an improvement in the stock management
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such as saving time in locating the coils, as well as reducing the management costs of the raw

materials. Besides these issues, the model is able to respond more efficiently to customers’ orders

by delivering a weight that is much closer to the one ordered.

As it has been studied in the extended computational experience, as the number of orders and

available stock increase, so does the difficulty in solving the problem. Due to the characteristics

of the problem, a heuristic strategy that decomposes the orders according to a rule based in the

compatibility matrix between orders and stock could be investigated in order to deal with bigger

instances.

As far as the future investigation is concerned, the company is interested in carrying out a

planning process over several days simultaneously. Therefore, in our particular case, this new

model needs to include more orders with their corresponding deadlines and a sequencing of the

workload over different days, indicating which coils should be cut each day to meet the due dates.

Set up costs due to the adjustments of the knives will need to be considered as well. At the same

time, this new model will be far more complex and it will require more computational effort to

solve full-size instances. At this phase, we therefore plan to develop approximate methods.
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