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Abstract: Leishmaniasis and Chagas disease are still considered neglected illnesses due to the lack
of investment in research, despite the fact that almost one million new cases are reported every
year. Four 7-oxo-5-phenyl-1,2,4-triazolo[1,5-a]pyrimidine (HftpO) first-row transition complexes (Cu,
Co, Ni, Zn) have been studied for the first time in vitro against five different species of Leishmania
spp. (L. infantum, L. braziliensis, L. donovani, L. peruviana and L. mexicana) as well as Trypanosoma
cruzi, showing higher efficacy than the reference commercial drugs. UV and luminescence properties
were also evaluated. As a proof of concept, anchoring of a model high-effective-metal complex as
an antiparasitic agent on silica nanoparticles was carried out for the first time, and drug-release
behaviour was evaluated, assessing this new approach for drug vehiculation.

Keywords: metal complex; coordination chemistry; leishmaniasis; antiparasitic activity; drug release;
nanoparticles

1. Introduction

Triazolopyrimidine derivatives have been known since the beginning of the last cen-
tury, when Bülow and Haas published for the first time the synthesis of some of them [1].
Nevertheless, their complexation properties were not studied until 1952, by Birr [2], who
used this organic family to stabilize photographic silver emulsions. Since then, applications,
including antipyretic, analgesic, anti-inflammatory, herbicidal, antifungal, antimicrobial,
antitumor and antiparasitic properties [3,4], have been displayed for triazolopyrimidine lig-
ands, as well as for their metal complexes, because of their remarkable pharmacology [5]. In
the specific case of 1,2,4-triazolo[1,5-a]pyrimidines ligands, their structural similarity with
purines makes them excellent candidates for the study of reactivity with different metal
ions as biomimetic models [6–10], due to their structural similarity with these nucleobases.
Triazolopyrimidines exhibit great versatility as ligands, owing to the presence of accessible
electron pairs on their skeleton, which are located in at least three nitrogen atoms. Their
main coordination mode is via N3-monodentate or N3,N4-bridging, but many other bond-
ing routes could also be possible when the number of exocyclic substituents in the aromatic
ring increases. The interaction between metal ions and 1,2,4-triazolo[1,5-a]pyrimidines
ligands shows a great capability to act as building blocks with great versatility, with applica-
tions for the synthesis of metal–organic frameworks (MOFs) or multidimensional systems
with useful properties such as magnetism, luminescence or biological activity [11–15].
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The triazolopyrimidine family mentioned before includes a wide variety of derived
structures, such as the 1,2,4-triazolo[1,5-a]pyrimidine itself (tp) in its non-substituted
form [16] and the 5,7-dimethyl-1,2,4-triazolo[1,5-a]pyrimidine (dmtp) [17] and 7-amine-
1,2,4-triazolo[1,5-a]pyrimidine (7-atp) [18] structures. Additionally, among the most reac-
tive groups of triazolopyrimidines are those containing exocyclic oxygen atoms. These
additional oxygen coordination positions spread out the range of metallic centres that
can interact with these ligands (i.e., lanthanide ions). Some examples of oxygenated tri-
azolopyrimidine derivatives are dihydro-5-oxo-[1,2,4]triazolo-[1,5-a]pyrimidine (5HtpO
and 7HtpO), whose structures were described by Abul Haj et al. [19], or the commercial
4,7-dihydro-5-methyl-7-oxo[1,2,4]-triazolo[1,5-a]pyrimidine (HmtpO) [20]. One of the last-
synthesized and characterized oxo triazolopyrimidine derivatives, 7-oxo-5-phenyl-1,2,4-
triazolo[1,5-a]pyrimidine (HftpO) [21] (Scheme 1), has been employed in the present study.
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Leishmaniasis is one of the seven primary illnesses that are present in all continents.
According to the World Health Organisation (WHO), it is endemic nowadays in almost
100 countries, with more than 350 million people on the planet at risk to be infected. Mil-
lions of new cases appear every year, and the mortality rate is higher than 60,000 deaths
in a year, a value among parasitic diseases which is only surpassed by malaria. Although
it is usually located in poor and unhealthy areas of the Third World, it is also present in
Europe and Asia due to migration phenomena, making it a global problem. This fact is
enhanced when large population groups coexist, as happens in crowded refugee camps or
in war and conflict areas, before the populations dissemination to their host countries [22].
Leishmaniasis can manifest in humans mainly in three different clinical conditions: visceral,
the most aggressive and mortal form; cutaneous, leading to nodules and ulcers in the
skin; and mucocutaneous, which causes permanent lesions in the mucosa (mouth, nose
or genital) [23,24]. In all cases, the transmission vectors are dipteral insects of the genera
Lutzomyia in the New World and Phlebotomus in the Old World (Table 1) [25]. Leishmaniasis
is considered to be a neglected disease because of the low investment in the search for
new, efficient drugs. Glucantime is the only drug available to fight these diseases nowa-
days [26,27], since the use of Pentostam is deprecated [28]. On the other hand, Chagas
disease (or American trypanosomiasis) [29] is a chronic neglected illness caused by a Try-
panosoma cruzi parasite, and affecting more than 10 million people worldwide. Its main
incidence region comprises poor South and Central America areas, but the infection is
present in many other continents through migration patterns and blood transfusions from
latent donors. The transmission mechanism runs through contact with urine and faeces
of infected blood-sucking triatomine bugs [30,31]. The most commonly used commercial
drugs to fight against these infections are nifurtimox and benznidazole, two nitro hetero-
cyclic derivatives with contrasted trypanozidal effects [32–34]. In the past three decades,
many biochemical studies have pointed to different possible targets to stop the infections,
like the inhibition of ADP phosphorylation or the beta-oxidation of fatty acids [35,36].
Despite the obvious advantages of these commercial drugs and the fact that they are still
the first-line antiparasitic treatments, they exhibit several limitations, like serious side
effects [37]. Thus, the development of novel and more efficient therapies to fight Chagas
disease, minimizing its impact in society, is also an urgent need [38–40].
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Table 1. Leishmania spp. species used in this work, with their geographical locations, reservoir hosts
and vectors.

Leishmania Species Infection Geographical Location Reservoir Vector

L. infantum VL, CL, ML New World for VL
Old World for CL and ML Rodents, dogs, foxes, jackals L. longipalpis

P. pcrniciosufi, P. arias

L. braziliensis CL, MCL New World Forest rodents, anteaters Lutzomyia spp.

L. peruviana MCL New World Dogs L. verrucarum, L. pvmenis

L. mexicana CL, DCL, MCL New World Forest rodents L. olmeca

L. donovani VL, PKDL Old World Humans, rodents P. argentipes, P. orinntalis, P. martini

VL: Visceral leishmaniasis; CL: Cutaneous leishmaniasis; ML: Mucosal leishmaniasis; MCL: Mucocutaneous
leishmanisis; DCL: Diffuse cutaneous leishmaniasis; PKDL: Post-kala azar dermal leishmaniasis. Data in Table 1
were obtained from WHO databases and Oryan et al. [25], Shiraz University, 2015.

The molecular structures of antimonial drugs like meglumine antimoniate (Glucan-
time), as well as their modes of action and metabolic natures, are still being explored [41–43].
Alternatives with non-antimonial antiparasitic prodrugs such as anfotericine B are also
being used as leishmaniasis treatments [44,45], but their prices restrict their availability and
implementation in underdeveloped countries, which are the most affected areas. Moreover,
these non-antimonial prodrugs present adverse side effects, especially kidney failure, in
addition to the beginning of resistance, as reported last year [46]. The antimonial drugs
also present serious side effects, like allergic dermopathy, peripheral polyneuropathy
or vomiting [47], the need for daily parenteral administration, and the development of
drug resistance [48,49]. Many research groups are making advances in this field by using
transition-metal complexes to combat parasitic diseases [50,51], mainly with ruthenium
compounds [52–56]. Antiparasitic evaluation studies and intra- and extracellular assays
have been carried out by our research group using 1,2,4-triazolo[1,5-a]pyrimidine deriva-
tives and their metal complexes, studies which have shown great results against tropical
diseases currently without effective treatments, and particularly against leishmaniasis and
Chagas disease [57–61]. Many other authors have also pointed to a metal-complexes strat-
egy as a promising alternative for fighting tropical parasitic diseases caused by members
of the Trypanosomatidae family, such as leishmaniasis, as well as other tropical illnesses
like Chagas disease or malaria. A synergetic effect is observed in antiparasitic efficacy
when the triazolopyrimidine derivatives are combined with a variety of metal ions in
coordination complexes [62,63]. This renders triazolopyrimidine metal complexes potential
chemotherapeutic agents for curing diseases related to parasites. The interest in this topic
has led to some reviews being published in the last decade [64–66].

The use of and interest in nanomaterials in biomedicine is increasing every year
due to their characteristic mechanical, optical and electrical properties [67,68], especially
as carriers for drug delivery [69]. Focusing on that, nanoparticles are some of the most
widely used transporters. The possibility of size and porosity control in their synthesis,
as well as their versatility of functionalization make them one of the most useful types of
carriers to distribute drugs in an efficient way [70,71]. Their nature can range from polymer-
[72] or protein-based [73] to metallic gold [74], iron [75], or copper nanoparticles [76].
Mesoporous silica nanoparticles are one of the most-used nanosystems in biomedicine for
drug delivery [77–79], despite the fact that their use in parasitology has just bloomed in the
last five years [80–82].

In the present work, luminescence properties, solution stability and biological assays
of four 7-oxo-5-phenyl-1,2,4-triazolo[1,5-a]pyrimidine (HftpO) first-transition complexes
with the general formula [M(ftpO)2(H2O)4] with M = Cu (1), Co (2), Ni (3), and Zn (4) are
discussed for the first time. The antiparasitic activity of HftpO complexes was evaluated
against an Arequipa strain of T. cruzi and five Leishmania spp. species (the European type
L. infantum; the South American parasites L. braziliensis present in Brazil, L. peruviana
indigenous to Peru, and L. mexicana, which acts mainly in the Yucatán Peninsula; and the
mostly-reported-in-the-Indian-subcontinent L. donovani), as well as evaluated for toxicity
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against macrophage J774.2 and Vero host cells. The results reveal a better selectivity index
in most cases, compared with the isolated ligand and the commercial drugs Glucantime and
benznidazole. Thus, a proof-of-concept of drug release for these kinds of complexes using
silica nanoparticles as carriers was performed using the copper one as model, confirming
that the complex antiparasitic capacity continues to be active against different Leishmania
spp. species.

2. Results
2.1. Synthesis and Characterization of Triazolopyrimidine Complexes

The four metal complexes of 7-oxo-5-phenyl-1,2,4-triazolo[1,5-a]pyrimidine (HftpO)
were synthesized following the method previously reported by our group [21]. The general
procedure can be found in the Materials and Methods section of this work.

2.1.1. Crystal Structures of [M(ftpO)2(H2O)4] (1–4)

Compound 1 crystallizes in the monoclinic P21/c space group. A perspective view of this
complex is shown in Figure 1. The structure consists of one mononuclear [Cu(ftpO)2(H2O)4]
coordination complex, in which each Cu (II) ion has an octahedral CuN2O4 stereochem-
istry. This geometry is constituted by four coordination water molecules and two nitrogen
atoms belonging to two different anionic ftpO− ligands. A strong hydrogen-bond interaction
between O1W and N4 is also present, leading both coordinated ftpO− moieties up to an
almost coplanar position. The crystallographic data of compound 1 were previously reported
by our group [21], and the whole dataset can be obtained free of charge from The Cam-
bridge Crystallographic Data Centre via “www.ccdc.cam.ac.uk/data_request/cif accessed on
25 September 2023” linked to identification number 1536813. X-ray powder diffraction (XRD)
data confirm the isostructural nature of the four complexes, assigning the general formula
[M(ftpO)2(H2O)4] to the whole series.
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2.1.2. Spectroscopic Properties

In order to complete the spectroscopic studies of these complexes, stability over time
was measured by UV using 10−3 M ethanol absolute solutions of the four complexes. The
spectra were recorded across 3 days at different moments, maintaining the curves in the
same shape after 72 h in solution (Figure 2). Absorption maximums for each complex were
distorted from the HftpO maximum, indicating that complex integrity remains unaltered
in the ethanol solution (Table 2).

www.ccdc.cam.ac.uk/data_request/cif
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Table 2. Maximum absorption peaks for HftpO and complexes 1–4.

Compound Wavelength (nm)

HftpO 238
1 245
2 244
3 246
4 240

UV behaviour was also studied for the samples in vitro, in trypanosomal liquid
medium (MTL) solution after two days of heating at 37 ◦C, via ultrasounds in sealed
Eppendorf tubes. As can be noticed in Figure 3, the curves corresponding to MTL without
sample, the sample containing HftpO and the sample containing the [Cu(ftpO)2(H2O)4]
complex exhibit different shapes. The four metal compounds have identical spectrum
shapes, a result which supports the isostructural nature of the samples (a description
can be found in the Supplementary Material, Figures S1–S3). The HftpO ligand presents
a maximum of around 280 cm−1 in MTL, while for the metal compounds, this value
shifts to 300 cm−1, supporting the stability-in-solution of the complexes in a parasite
culture medium.
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Complementary IR spectra information, as well as a complete thermoanalytical study
of the complexes 1–4, can be found in Mendez-Arriaga et al. [21].

2.1.3. Luminescent Properties

The luminescent emission spectra of free HftpO and its metal complexes were recorded
in ethanol solution (1 × 10−3 M) with an excitation wavelength of 348 nm at room tempera-
ture. The maximum UV-absorption wavelength previously obtained for each compound
was tested, but no emission signals were obtained. These emission spectra are depicted in
Figure 4. Free-ligand HftpO exhibits a strong luminescent emission between 400–440 nm, in
contrast to the partial luminescence-quenching phenomena observed in the nickel complex
(3). In the cases of complexes 1,2, with Cu(II) and Co(II) centres, the luminescence signal
fully disappears. The zinc complex (4) exhibits a different emission pattern in comparison
with the cobalt one and HftpO, at 348 nm. The decreases in emission intensity were in
the order of Co(II) = Cu(II) > Zn(II) > Ni(II). The decrease of the luminescence signal is a
rather common phenomenon attributed to the interaction between metal ions and strongly
luminescent ligands, such as Schiff bases or aromatic heterocycles, during the complexation
process [83].
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2.2. Synthesis and Characterization of Functionalized Silica Nanoparticles

The synthesis of MCM-41 silica nanoparticles (MSN) was carried out following the
procedure reported by Zhao et al. [84], with slight modifications. To enhance the coor-
dination capacity of the proposed nanosystems, MSN nanoparticles were covered with
bromide groups from bromopropyl triethoxysilane ligand to obtain MSN-Br systems.
Finally, as a proof of concept, HftpO ligand and complex 1 were selected for immobil-
isation on the MSN surface for further release in order to study kinetics and evaluate
their efficacy as leishmanicidal agents. A standard procedure of stir-and-heat in toluene
in a Schlenk tube with a nitrogen atmosphere were performed to obtain MSN-ftpO and
MSN-CuftpO nanosystems (Scheme 2). The functionalization of silica nanoparticles was
performed following the methodology previously reported by our group [70], which can
be found in the Section 4.
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2.2.1. Transmission Electron Microscopy (TEM)

To evaluate the nanoparticles’ appearance, mesoporous silica nanoparticle (MSN)
starting material was characterized by TEM. As shown in Figure 5, MSN presents a semi-
spherical morphology with a wide size distribution, with a diameter prevalence between
110 and 130 nm. A few, larger, 220–230 nm nanoparticles can be noticed in the histogram, but
these data can be attributed to the fusion of small silica nanoparticles. Well-defined pores
in a hexagonal arrangement can be observed, a common characteristic of MCM-41 MSN.
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2.2.2. Nitrogen Adsorption/Desorption Isotherms

The porous properties of the starting material (MSN) and both functionalized carri-
ers (MSN-ftpO and MSN-CuftpO) were evaluated with nitrogen adsorption/desorption
isotherms at 77 K, as shown in Figure 6. Experimental results show a decrease in the
surface area of the modified MSN compared to the starting material, as expected. MSN
exhibits the classical type IV isotherm (characteristic of mesoporous silica supports),
while both functionalized nanosystems exhibit the characteristic appearance of materials
with filled pores [85,86]. Data-fitting of the nitrogen adsorption/desorption results
to Brunauer–Emmett–Teller (BET) isotherms permitted the determination of the most
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relevant surface parameters (Table 3). Raw MSN presented a BET surface of 682 m2g−1,
a pore volume of 0.52 cm3g−1 and a 3.2 nm pore diameter. The functionalization of
MSN surface with Br and the subsequent anchoring of the HftpO ligand and complex 1
resulted in a decrease of the three parameters in both studied nanomaterials. Surface
area and total pore volume presented slightly higher values in MSN-CuftpO due to the
steric hindrance of the larger size of the metallic complex occupying the available pores
of the silica.
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Table 3. Surface parameters of MSN, MSN-ftpO and MSN-CuftpO obtained by N2 adsorp-
tion/desorption analysis.

Material SBET (m2g−1)
Total Pore Volume

(cm3g−1) Pore Diameter (nm)

MSN 682 0.52 3.2

MSN-ftpO 227 0.47 <2.0

MSN-CuftpO 305 0.49 <2.0

2.3. Release Studies

The release behaviour of copper complex (1) was studied by a specific assay of MSN-
CuftpO. Thus, three different samples containing 0,4 mg copper complex nanomaterial
were suspended in 4 mL of PBS buffer (0.1 mg/mL, pH 7.4). This buffer was chosen as a
model to mimic the cell culture media that was subsequently used, which was coherent
with human pH, and to avoid contamination using MTL. After an initial sonication,
the sample was incubated at 37 ◦C and centrifuged at specific time intervals (Figure 7),
in order to analyse the absorption via UV spectroscopy at the maximum absorbance
wavelength of complex 1. The experiment was conducted for 3 days, but the stabilization
was reached at 3 h, verifying the complete release of the loaded compound.
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2.4. In Vitro Antiparasitic Activity and Toxicity
2.4.1. In Vitro Efficacy of HftpO and Its Complexes (1–4)

Taking into account the synergic properties of the metallic complexes with triazolopy-
rimidine ligands, as previously described by several authors [64–66], and given that cur-
rently used treatments against leishmaniasis usually cause serious problems, we decided
to check the antiproliferative activity and cytotoxicity of the four mentioned complexes
against five different species of Leishmania spp. (L. infantum, L. braziliensis, L. peruviana, L.
mexicana and L. donovani) and Trypanosoma cruzi. The results were compared with commer-
cial drugs Glucantime and benznidazole, isolated HftpO derivative, and inorganic salts
employed in the synthesis (Tables 4 and 5, Figures 8 and 9) in order to study the potential
efficacy improvement provoked by the metal coordination. According to the promastigote
growth inhibition, no significant effect was noticed for the inorganic salts, as expected, so
the data are not included in the tables.

Table 4. In vitro activity of complexes (1–4) against promastigote forms of Leishmania spp. and J774.2
macrophages after 72 h of incubation at 37 ◦C.

Compound
IC50 (µM) a ± SD SI b

L. inf. L. brazi. L. peruv L. mex. L. dono. J774.2 macro. L. inf. L. brazi. L.
peruv. L. mex. L. dono.

Glucantime 18.0 ± 3.1 25.6 ± 1.7 25.0 ± 2.0 31.0 ± 2.3 26.6 ± 5.4 15.2 ± 1.0 0.8 0.6 0.6 0.5 0.6

HftpO >200 37.5 ± 2.9 79.0 ± 6.7 116.6 ± 10.2 46.9 ± 3.8 958.5 ± 74.2 - 25.6 (42) 12.1
(20)

17.2
(34) 20.4 (34)

1 71.5 ± 5.8 54.4 ± 3.6 99.2 ± 8.7 139.3 ± 11.6 49.3 ± 3.9 1827.0 ± 138.6 25.6 (32) 33.6 (56) 18.4
(31)

13.1
(26) 37.1 (62)

2 49.1 ± 4.4 53.9 ± 4.1 59.3 ± 6.6 51.6 ± 4.5 46.1 ± 3.3 1200.8 ± 111.4 24.5 (31) 22.3 (37) 20.2
(34)

23.3
(47) 26.0 (43)

3 45.2 ± 3.8 104.8 ± 7.4 53.9 ± 5.1 67.6 ± 5.4 47.2 ± 3.7 2438.6 ± 156.3 53.9 (67) 23.3 (39) 45.2
(57)

36.1
(72) 51.7 (86)

4 90.3 ± 6.1 77.3 ± 4.0 >200 >200 51.3 ± 3.2 1026.9 ± 89.4 11.4 (14) 13.3 (22) - - 20.0 (33)

Three different determinations were measured in each case to elaborate the table. a IC50 = Concentration required
to obtain a 50% inhibition in parasite or cell population, calculated with a linear regression analysis from the
values employed (1, 10, 25 and 100 µM for promastigote forms of Leishmania spp. and 50, 100, 200 and 400 µM for
host cells). b Selectivity index = IC50 against J774.2 macrophages/IC50 parasite (promastigote forms). In brackets:
number of times that ligand SI surpassed the reference drug SI.
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Table 5. In vitro activity of complexes (1–4) against epimastigote forms of T. cruzi and Vero cells after
72 h of incubation at 37 ◦C.

Compound
IC50 (µM) a ± SD SI b

T. cruzi Vero Cell T. cruzi

Benznidazole 15.5 ± 1.4 13.6 ± 0.9 0.9

HftpO 173.0 ± 16.7 573.0 ± 43.8 3.3 (4)

1 153.1 ± 13.2 322.8 ± 26.8 2.1 (2)

2 112.5 ± 9.8 156.9 ± 11.4 1.4 (1)

3 73.5 ± 6.8 375.8 ± 32.7 5.1 (6)

4 >200 - -
Three different determinations were measured in each case to elaborate the table. a IC50 = Concentration required
to obtain a 50% inhibition in parasite or cell population, calculated with a linear regression analysis from the
values employed (1, 10, 25 and 100 µM epimastigote forms of T. cruzi and 50, 100, 200 and 400 µM for host cells).
b Selectivity index = IC50 against Vero cells/IC50 parasite (epimastigote forms). In brackets: number of times that
ligand SI surpassed the reference drug SI.
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2.4.2. In Vitro Screening of MSN-ftpO and MSN-CuftpO

Cytotoxicity assays and promastigote screenings were performed for the silica nanopar-
ticles and their derived nanomaterials to check their capability to inhibit leishmania spp.
growth. L. infantum and braziliensis were selected as parasite models of two different clinical
behaviour infections, and were incubated with HftpO and copper complex 1 silica nano-
materials. Compound 1 was selected due to its promising behaviour against both studied
Leishmania spp. species and a significant efficacy against Chagas disease. Table 6 exhibits
the results of these biological assays. The inhibition tendency of the studied materials is
represented in Figure 10.

Table 6. In vitro activity of nanomaterials against promastigote forms of Leishmania spp. and J774.2
macrophages after 72 h of incubation at 37 ◦C.

Compound
IC50 (µg/mL) a ± SD SI b

L. inf. L. brazi. J774.2 macro. L. inf. L. brazi.

Glucantime 14.0 ± 1.4 6.0 ± 0.7 17.2 ± 1.0 1.2 2.9

MSN - - >1000 - -

MSN-Br - - 54.6 ± 4.9 - -

MSN-ftpO 25.0 ± 3.1 33.0 ± 3.8 55.4 ± 5.1 2.1 (2) 1.7 (0)

MSN-
CuftpO 16.0 ± 0.8 19.0 ± 1.0 162 ± 18.6 8.7 (7) 8.5 (3)

Three different determinations were measured in each case to elaborate the table. a IC50 = Concentration required
to obtain a 50% inhibition in parasite or cell population, calculated with a linear regression analysis from
the values employed (1, 10, 25 and 100 µM for Glucantime and 0.025, 0.01, 0.005 mg/mL for nanomaterials).
b Selectivity index = IC50 against J774.2 macrophages/IC50 parasite (promastigote forms). In brackets: number of
times that ligand SI surpassed the reference drug SI.
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3. Discussion

The HftpO ligand showed a significant effect on the extracellular parasite forms, but
its IC50 was higher than those of the reference drugs. The metallic complexes presented
similar acceptable values for IC50 in the promotion-of-cytotoxicity assays, but they still did
not exceed the performance of commercial drugs in some cases, like that of L. braziliensis.
Nevertheless, for the HftpO ligand as well as its metal complex, the cytotoxicity results
were better than those of the reference drugs. Comparing Glucantime and HftpO, the
concentration needed to consider the triazolopyrimidine toxic for the host cells was more
than 60-fold higher than that of the commercial leishmanicidal drug (Table 4, IC50 against
J774.2 macrophages column). This improvement of the toxicity effect was incrementally
achieved in the complexes due to the synergetic effect derived from the coordination to
a metal ion centre. For all of the metallic compounds, the cytotoxicity IC50 values for
macrophages were extraordinarily high. On the other hand, the Vero cells assay resulted in
very strong cytotoxicity values which surpass the Benznidazole ones, but the free HftpO
still exhibits the lowest toxic activity for Vero cells. The selectivity index (SI) is obtained
by the combination of promastigote inhibition growth and cytotoxicity in host cells and is
used to evaluate the efficacy of a prodrug [87]. The mentioned coefficient illustrates the
great efficacy of these HftpO complexes as anti-leishmania agents, improving upon values
in comparison to the commercial drug and free ligand in all cases. Figures 8 and 9 depict
and compare the SI values for all the compounds assayed against different Leishmania spp.
species and Trypanosoma cruzi, respectively.

As shown in Figure 8, nickel and cobalt complexes (2 and 3) exhibit the best SI
values of the series, being more than 50-fold better than Glucantime values for every single
Leishmania spp.-assayed species, with only the exception of 3 for L. braziliensis. Nevertheless,
focusing on the L. braziliensis inhibition, the Cu(II) coordination complex (1) possesses the
best ratio of efficacy for fighting this illness. The only compound with an apparently
worse activity is 4, which is in good agreement with the previously reported data for
zinc triazolopyrimidine complexes [65]. Nevertheless, if we compare the published data
of the only two zinc 1,2,4-triazolo[1,5-a]pyrimidine complexes already assayed against
Leishmania spp. species, [Zn(dmtp)2(H2O)4](ClO4)2·2dmtp·2H2O [11] and [Zn2(7atp)4(µ-
bypym)(H2O)4](ClO4)·2(7atp) [88], this new zinc compound improves the SI result for L.
infantum, L. braziliensis and L. donovani, thus becoming the best zinc triazolopyrimidine
compound with antiparasitic effectiveness yet reported, as far as we know. The T. cruzi SI
values show that complex 3 is the best antiparasitic prodrug, followed by the free ligand.
Only the zinc compound under discussion in this work turns out to be an exception, with
no significant antiproliferative efficacy shown against T. cruzi, L. peruviana or L. mexicana.
This phenomenon can be attributed to the general tendency towards a low solubility in
Zn complexes in comparison with other transition-metal compounds [89,90], which could
prevent a correct interaction in solution with the parasite species studied.

In general, HftpO coordination compounds display better SI coefficients against
Leishmania spp. strains, not only compared to Glucantime, but also surpassing the free
triazolopyrimidine derivative. In the case of Chagas disease, only the nickel complex
improves upon the ligand results, but the commercial reference is always surpassed by Cu,
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Co and Ni. This fact supports the theory of a synergetic effect caused by the coordinated
combination between metal centres and organic ligands, improving the effectiveness against
parasite infections by associating it with a decrease in the toxicity levels tolerated by the
host cells.

The results for the antiparasitic activity of the nanomaterials evaluated indicate a
great efficacy of the copper complex, with higher values of SI in comparison with free
Glucantime, while keeping a similar efficacy range, despite the fact that silica nanoparticles
were modified with only 20% of the ligand or metal complex, relative to the weight
percentage. The release profile shows a complete liberation of the drug inside of two hours,
confirming the complete administration of the complex during the screening experiment. A
prevailing trend at low concentrations for both proposed systems can be noticed by looking
at the inhibition graphics (Figure 10), which are especially pronounced for L. braziliensis.
This behaviour can be attributed to an agglomeration tendency for silica nanomaterials in
the MTL medium in the experiment wells in scalation concentrations.

4. Materials and Methods
4.1. General

All reagents were purchased from commercial sources and used as received without
further purification. The synthesis of HftpO ligand and its metal complexes followed the
methodology described in Méndez-Arriaga et al. [21], which is briefly described below.

4.2. Synthesis of HftpO and [M(ftpO)2(H2O)4] where M(II) = Cu (1), Co (2), Ni (3) and Zn (4)

Following the procedure previously reported by our research group [21], a mixture
containing ethyl benzoylacetate (0.02 mol) and 3-amino-1,2,4-triazole (0.02 mol) was re-
fluxed in 10 mL of acetic acid for 12 h. A white solid appeared when cooling, which was
washed with abundant water and CH2Cl2 to remove all the acid excess. Then, the white
solid was dried in a vacuum desiccator. For the synthesis of the metal complexes, a hot
solution of HftpO (1 mmol) in 20 mL of ethanol was added to another warm solution of
5 mL of ethanol containing 1 mmol of the respective nitrate salt (1:1). First precipitate,
which was formed immediately, was removed from the solution. After one week at room
temperature, a microcrystalline product was obtained.

4.3. Synthesis of Mesoporous Silica Nanoparticles

The synthesis of MCM-41 silica nanoparticles (MSN) was carried out following the
procedure reported by Zhao et al. [84], with slight modifications. A total of 3.5 mL of
a 2 M aqueous sodium hydroxide solution was added to an aqueous solution of CTAB
(1.0 g, 2.74 mmol in 480 mL of Milli-Q water). After that, the silica precursor TEOS (5 mL,
22.4 mmol) was added dropwise under vigorous stirring, allowing the mixture to react
for 2 h at 80 ◦C. Once a white precipitate appeared, the product was isolated by filtration,
washed with abundant Milli-Q water and methanol (2 × 20 mL) and dried for 24 h at 80 ◦C
on a stove. Finally, the MSN were calcined at 550 ◦C for 24 h with an increasing temperature
ramp of 1 ◦C/min.

4.4. Functionalization of Mesoporous Silica Nanoparticles with (3-Bromopropyl)triethoxysilane
(MSN-Br)

MSN nanoparticles were functionalized with bromide groups. This process was
performed following the procedures reported previously by Bollu et al. [91]. A quantity
of 500 mg of MSN in a Schlenk tube was dehydrated at 90 ◦C under vacuum overnight.
The activated silica was dispersed in dry toluene (40 mL), adding 525 µL of bromopropyl
triethoxysilane ligand (BrP) (100% w/w BrP/SiO2) to the solution. The mixture was heated
to 110 ◦C and stirred for two days. After that, the dispersion was centrifuged and the
solid was washed with toluene (×2) and with diethyl ether (×1). The obtained white solid,
MSN-Br, was dried overnight at 70 ◦C on a stove.
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4.5. Ligand and Complex Coordination (MSN-ftpO and MSN-CuftpO)

HftpO ligand and copper complex 1 were incorporated into the silica nanomaterial
MSN by coordination through HBr liberation. Initially, 100 mg of MSN-Br was activated at
90 ◦C and under vacuum in a Schlenk tube overnight. After that, 20 mL of dry toluene and
20 mg of ligand or complex, respectively, were added and heated for 48 h at 110 ◦C. Finally,
the suspension was centrifuged, and the isolated solid was washed twice with toluene and
once with diethylether. Finally, the solids were dried at room temperature, obtaining a 20%
in weight functionalization.

4.6. Physical Measurements

Luminescence and UV spectra for ethanol solutions were recorded with Varian Cary
Eclipse equipment at University of Granada. Adsorption−desorption isotherms of nitrogen
were measured using a Micromeritics ASAP 2020 at University Rey Juan Carlos. Surface
areas and pore size were calculated using Brunauer–Emmett–Teller (BET) and Barret–
Joyner–Halenda (BJH) methods, respectively. Transmission electron microscopy (TEM)
images were obtained with a JEOL JEM 1010 at a 100 kV operating voltage. The samples
were dispersed using ethanol solvent, followed by an ultrasonic bath for 30 min before
being spread onto a TEM copper grid (300 mesh) covered with a holey carbon film. The grid
was then air-dried at room temperature. The images were acquired with the equipment’s
software and managed with ImageJ, version 1.53t [92].

4.7. Parasite Strain Culture

Extracellular forms of the studied parasites (known as promastigotes in Leishma-
nia and epimastigotes in T. cruzi) were cultured in a liquid culture medium following
the methodology described in González et al. [93]. Studied strains were obtained from:
T. cruzi (MHOM/Pe/2011/Arequipa, DTU V), L. peruviana (MHOM/PE/84/LC26), L.
mexicana (MHOM/BZ/82/Bel21), L. braziliensis (MHOM/BR/1975/M2904), L. donovani
(MHOM/PE/84/LC26) and L. infantum (MCAN/ES/2001/UCM-10). All of these strains
were transferred to our research group by Laboratorio de Leishmaniosis y Chagas, Instituto
Nacional de Salud, Lima (Peru).

4.8. In Vitro Activity Assays

The screening of extracellular forms of parasites was carried out using 24-well plates
with MTL medium and 5 × 104 parasites per well. HftpO complexes present serious
solubility problems due to stacking interactions between the phenyl groups of the ligand,
so the dilution was not possible in water or biologically compatible mixtures of ethanol,
DMF or DMSO. The samples were finally suspended in culture medium after two days
of moderate heating at 37 ◦C and ultrasounds in sealed Eppendorf tubes. Afterwards,
they were tested at 1, 10, 25 and 50 µM, leaving some wells without drugs as control, and
were incubated at 28 ◦C during 72 h before the parasite final count by haemocytometric
Neubauer chamber.

4.9. Cell Culture and Cytotoxicity Test

Macrophages were used as cellular models to simulate host cells, due to the fact that
those are the usual cells Leishmania parasites infect. J774.2 macrophages from the European
Collection of Cell Culture (ECACC, number 85011428) were cultured in RPMI medium
supplemented with 10% inactivated calf serum and maintained at 37 ◦C with a 5% CO2
atmosphere. Vero cells (EACC, number 84113001), chosen with the same purpose as that of
the T. cruzi studies, underwent the same culture conditions. All the mammal cells used in
the cytotoxicity test were purchased from Centro de Instrumentación Científica, University
of Granada (Spain) (https://cic.ugr.es/, accessed on 25 September 2023).

Cytotoxicity tests were performed in 96-well microplates using compound concen-
trations of 50, 100, 200 and 400 µM. Resazurin blue was added to each well in order to
measure colour intensity using an ELISA reader.

https://cic.ugr.es/
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The half maximal inhibitory concentration (IC50) is a quantitative measure of the
potential of a compound to inhibit a specific biological process by 50%, and is primarily
defined through in vitro test models [93]. Selectivity index (SI) can be defined as the ratio
of the toxic concentration of a sample against its effective bioactive concentration [94,95].

5. Conclusions

Four triazolopyrimidine metal complexes have been characterized by spectroscopic
techniques, verifying the coordination of the triazolopyrimidine ligand to the metal centres,
and their biological activity was studied. The tested coordination complexes improved
upon the previously reported leishmanicidal effect of commercial drugs and free HftpO lig-
and in most of the species analysed, showing much less toxicity against hosting macrophage
and Vero cells, despite the fact that they present lower antipromastigote activity, upholding
the proposed synergetic effect of the combination of a metallic centre with tryazolopyrimi-
dine derivatives. Cobalt complex 2 seems to be the most versatile compound for different
Leishmania spp. species, together with copper complex 1, due to the homogeneity of results
between the two strains. Nanoparticles with an HftpO coordinated copper complex have
shown an interesting profile of high efficacy at very low concentrations and a similar profile
to those of commercial drugs, even with only 20% of the active compound in their surfaces.
The assayed materials have turned out to be great candidates for further biological assays
in the search for side-effect-free drugs, as well as multifunctional materials which can
incorporate key molecules to facilitate the interaction between the drug candidates and
biological targets.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/ph16101380/s1, Figure S1. UV spectra complex 2 in MTL medium;
Figure S2. UV spectra complex 3 in MTL medium; Figure S3. UV spectra complex 4 in MTL medium.
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