
Vibrational Resonance in a heterogeneous scale free network of

neurons

Muhammet Uzuntarla,1, ⇤ Ergin Yilmaz,1 Alexandre Wagemakers,2 and Mahmut Ozer3

1
Department of Biomedical Engineering, Engineering Faculty,

Bülent Ecevit University, 67100 Zonguldak, Turkey

2
Nonlinear Dynamics, Chaos and Complex Systems Group,

Departamento de F́ısica, Universidad Rey Juan Carlos,

Tulipán s/n, 28933 Móstoles, Madrid, Spain
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Abstract

Vibrational resonance (VR) is a phenomenon whereby the response of some dynamical systems to

a weak low-frequency signal can be maximized with the assistance of an optimal intensity of another

high-frequency signal. In this paper, we study the VR in a heterogeneous neural system having a

complex network topology. We consider a scale-free network of neurons where the heterogeneity

is in the intrinsic excitability of the individual neurons. It is shown that emergence of VR in

heterogeneous neuron population requires less energy than a homogeneous population. We also

find that electrical coupling strength among neurons plays a key role in determining the weak

signal processing capacity of the heterogeneous population. Lastly, we investigate the influence

of interneuronal link density on the VR and demonstrate that the energy needed to obtain the

resonance grows with the increase in average degree.
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I. INTRODUCTION

The concept of resonance generally refers to an increase in the amplitude of the oscillations

provoked by a particular external forcing or signal. In a nonlinear system when it is a high-

frequency periodic signal that enhances the amplitude, the phenomenon is called vibrational

resonance (VR) [1]. The role of resonances in di↵erent biological processes is capital, and

recently attention has been paid to this phenomenon in biology [2–7].

Neural networks are biological units that process incoming sensorial or motor information,

in form of electrical or chemical signals, with the purpose of taking a determinate action. The

underlying dynamics of these signals can span over a variety of time scales: from milliseconds

to days. One of the most significant example of existence of such bichromatic signals in the

nervous system is the bursting neuron which operates in two widely di↵erent time scales [8].

Thus, it is not rare to have periodic signals with very di↵erent frequency at the input of a

given neuronal network. As we will study in this article, the VR phenomenon is likely to

occur in neuronal networks when two periodic signals with widely-separated frequency are

present simultaneously at the input. In terms of information processing, the fast periodic

forcing can help the network to detect and amplify a weak input signal. In this view, an

interpretation of the VR is the optimization of the signal to noise ratio by the perturbation.

In recent years, several works, though not many, have investigated the emergence of VR

in neural systems both at the level of single neuron and networks with di↵erent topologies

and coupling scheme [4, 9–15]. A common assumption in these modeling studies is that the

neurons in the population have been considered as identical units forming a homogeneous

system. However, actual neuronal populations, even cells within the same functional column,

exhibits a prominent heterogeneity in their response properties, such as mean firing rate,

receptive field location and size, and stimulus selectivity [16]. It has been demonstrated

both experimentally and theoretically that the heterogeneity in neural systems is relevant in

many contexts, such as in synchronization phenomenon [17, 18], coherence resonance [19],

neural coding e�ciency [16], reliability [20] or adaptation [21].

Our prime interest here is to study the importance of the diversity among neurons as to

the collective detection of a low frequency signal by the network. We understand diversity

as the spread of the intrinsic excitability among a population of neurons, which we will call

a heterogeneous population. It is a natural assumption if we consider a biological system,
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as no one is expecting uniformity in a real network. The excitability controls the reactions

of a neuron to a given input signal. Consequently, the global behavior of a heterogeneous

network will di↵er from the homogeneous case. We will see in section III B how the diversity

in the excitability is a key parameter regarding the VR.

Obviously, there are many more parameters a↵ecting the possible occurrence of the VR

in a neuronal network. Among others, the topology and coupling strength are particularly

interesting since they dramatically a↵ect the dynamics of the network. In Sec. III C the

coupling strength is treated as a global parameter that varies for all neurons. We find that

this global coupling can optimize the detection of the input signal of the network.

In the last part of the study, we investigate the influence of the network structure on the

VR. The network is constructed following a scale-free law of degree distribution, which is a

topology that has been found in many fields of science including neurosciences [22]. This

topology is used as a universal model through the article. We will discuss its relevance and

its significance for the VR in Sec. IIID.

II. MODEL AND METHODS

We consider a population of non-identical FitzHugh-Nagumo (FHN) neurons that is gov-

erned by the following di↵erential equations:
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where v
i

and w
i

represent the fast activation variable (membrane potential) and the slow

recovery variable of neuron i, respectively. " = 0.01 is the inherent time scale that separate

the fast and slow dynamics. In this work, we assume that all the neurons in the population

are subject to two di↵erent periodic signals injected to the neuron through the external

current

I
ex

= A cos(!t) + B cos(⌦t+ '
i

). (3)

The information to be processed is encoded in the weak signal A cos(!t) having a low

frequency ! and amplitude A. The other external drive B cos(⌦t + '
i

) indicates a high

frequency signal with amplitude B, frequency ⌦ >> ! and phase '
i

2 [�⇡, ⇡]. Unless
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stated otherwise, we set the external signals parameters as A = 0.01, ! = 0.1 and ⌦ = 5

(dimensionless parameters).

In Eq. 2, the parameter a
i

a↵ects the dynamics of individual neurons, hence allowing

us to control the diversity of the neuron population. The FHN neuron model is excitable

having a stable fixed point for a
i

> 1, and it exhibits oscillatory behavior for a
i

< 1. When

a
i

= 1, the stability of the fixed point is lost through a Hopf bifurcation. Presently in our

modeling, we allow a
i

to take numerical values from a Gaussian probability distribution,

satisfying ha
i

i = a0 and h(a
i

� a0)(aj � a0)i = �
ij

�2. � will be referred from now on as the

diversity strength. When the firing threshold is normally distributed (� > 0) we call the

network heterogeneous. The homogeneous case (� = 0) occurs when all the neurons are

identical in parameters.

Since we are interested in the weak signal detection performance of the neurons in their

excitable regime in presence of a high-frequency driving, we set a0 = 1.05 that keeps all the

neurons far away from the bifurcation point over certain interval of �. Finally, g
ij

is the

bidirectional electrical coupling strength between neuron i and j, beeing g
ij

= g
syn

if the

two are connected and g
ij

= 0 otherwise.

As the underlying interaction network of the neuron population, we use a scale-free (SF)

topology based on the preferential attachment algorithm [23]. The construction process of

SF network starts with a set of m fully connected nodes, and at each time step every new

node makes m links to m di↵erent nodes already present in the network. To incorporate

the preferential attachments of these links, we assume that the probability ⇧ that a new

vertex will be connected to node i depends on its degree k
i

, such that ⇧ = k
i

/
P

j

k
j

. After

a time evolution, this procedure builds a network with an average degree hki = 2m, and a

power-law degree distribution P (k) ' k�3. Without loss of generality, we set m = 2 and

N = 200 nodes throughout this work, yielding a SF network with an average degree hki = 4.

To evaluate the e↵ect of VR on the network, the collective temporal behavior is measured

by calculating the average membrane potential

V
avg

(t) =
1

N

NX

i=1

v
i

(t), (4)

where v
i

(t) is the time series of each FHN neuron simulated for n = 300 periods of the

low-frequency signal (T = 2⇡/!). The response of the network output to the low-frequency
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signal is usually defined by means of the Q factor [1]

Q =
p

Q2
s

+Q2
c

, (5)

where Q
s

and Q
c

are computed via the Fourier coe�cients after eliminating a su�ciently

large transients, T0:

Q
s

=
2

nT

Z
T0+nT

T0

V
avg

sin(!t)dt, (6)

Q
c

=
2

nT

Z
T0+nT

T0

V
avg

cos(!t)dt. (7)

Q is a measure of the Fourier spectrum of V
avg

at the frequency !. With this value we can test

the response of the network to the low frequency signal. The described mathematical model

is integrated numerically using the Forward Euler method with a time step �t = 0.005. The

simulations presented below have been averaged over 50 realizations of the network for any

given set of the model parameters.

III. RESULTS AND DISCUSSION

A. Homogeneous population

For the purpose of comparison and simplicity, we first investigate the VR in a SF network

by considering a homogeneous neuron population (� = 0). To illustrate the response of the

network we represent in Fig. 1 the spatiotemporal dynamics of the network in three typical

situations: for small, intermediate and high values of the amplitude B of the high-frequency

forcing.

For small values of B in Fig. 1 (a), it is seen that all the neurons in the network are in

a quiescent state, and therefore, the system is not able to detect the external low-frequency

signal for the given amplitude A. However, for an optimal value B
opt

= 0.06, most neurons

in the network fire in a strongly correlated manner with the input signal resulting in a high

encoding performance of the network. Finally, with a further increase in the amplitude of

the high-frequency driving, the correlation between neuronal activity and the input signal

is destroyed. The neurons fire regardless of the periodic weak input signal.

To quantify the above-outlined spatiotemporal dynamics more precisely, we have com-

puted the dependence of Q on B in Fig 1(b) for the same parameters. It can be observed
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Figure 1: Response of the homogeneous neuron population. (a) the activity of the whole network

is plotted as a function of time. The three panels have been simulated for three di↵erent values of

amplitude B of the high-frequency forcing, illustrating a non-resonant case (B = 0.02), an optimal

case for B = 0.06, and another non-resonant situation where the network is busy. (b) the factor Q

is represented as a function of B. The peak at B = 0.06 shows that the network resonates for this

amplitude of the high-frequency forcing. (� = 0, g
syn

= 0.005, N = 200, k
avg

= 4)

that there exists an optimal region of the high-frequency driving signal amplitude B, thus

exhibiting a bell shaped dependence characteristic of the vibrational resonance. Although

the phenomenon was previously reported on the level of single neuron and in some com-

plex networks of homogeneous neurons [4, 10], to the best our knowledge, this is the first

demonstration of emergence of vibrational resonance in a scale free network topology.

B. Heterogeneous population

Next, as the main goal of the current study, we now investigate how the intrinsic diversity

among neurons a↵ects the weak signal detection performance of the population having a SF

topology. To obtain a heterogeneous SF neuronal network, we have increased the diversity

strength � from zero to some critical value �
c

, which guaranties that all the neurons in the

population are in their excitable regime. A further increase in � beyond this critical value �
c

causes the transition of some neurons from excitable to repetitive firing regime. Our results
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Figure 2: B
opt

as a function of �. We show in (a) the results of the VR for di↵erent values of

the diversity parameter �. It is clear from that figure that the VR happens in all the cases. In

(b) we represent the maximum of the curve as a function of �. The optimum value shifts toward

smaller values as � increases, meaning that the signal can be detected with smaller amplitudes of

B. (g
syn

= 0.005, N = 200, k
avg

= 4)

are summarized in Fig. 2.

As a first comment, it is seen in Fig. 2(a) that regardless of the value of diversity

strength �, an optimal amplitude of the high frequency signal can maximize the response

of the heterogeneous SF network to a low frequency signal encoding the information. In

addition, with the increase of the diversity strength, the optimal resonant amplitude of the

high frequency signal B
opt

shifts towards smaller values of B as seen in Fig. 2(b). This

fact indicates that the weak signal detection in a heterogeneous network is a less-energy

consuming process when compared with the homogeneous population. In the context of

information theory, it has also been reported in a recent experimental study that the diverse

neuronal populations are more e�cient in encoding information than their homogeneous

counterparts [24].

To account for this fact in our simulations, we will classify the population into two groups

depending on the value of the excitability threshold a
i

as the population diversity increases.

The first group consists of the neurons with a
i

< a0, whereas the second group is formed

by the neurons which have a
i

� a0. Since the neurons in the first group are more excitable

than the neurons in the homogeneous case (all of which have a
i

= a0), smaller amplitudes B
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Figure 3: Space-time plots of typical patterns of network activity for some di↵erent values of �

and B which provide the maximal Q values in Fig. 2 (a). Notice that one can easily follow the

input signal by visual inspection of spatiotemporal patterns for each case. However, since the

synchronization in the network worsens with the inclusion of diversity, tracking the periodic input

is not easy as in the case of non-diverse network explaining the decrease in resonance peaks in Fig.

2 (a).

of the high frequency driving trigger the detection of the weak input signal for some of the

neurons. Through the synaptic coupling, this small number of neurons are able to pull the

other units in the same group which are almost ready to be excited and, hence, produce a

partial collective behavior correlated with the input signal. This partial collective behavior

acts as a strong basin of attraction for the whole system which forces the neurons in the

second group to track the input signal.

An additional increase of � increases the cleavage between the two groups of neurons. The

first group become more excitable while the second group become less excitable. Moreover,

some neurons in the first group have a
i

values very close to the bifurcation point that occurs

at a
i

= 1. The behavior of these neurons can be easily switched from excitable state to

oscillatory state by the synaptic noisy current resulting from the activity of the network.

Therefore, these repetitively firing neurons are independent from the input signal. Since the

number of neurons following the weak forcing decreases due to these autonomous neurons,

the collective network response Q decays as � increases.

To gain more insight about this type of behavior, we have obtained the spatiotemporal
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pattern of the neurons in Fig. 3 for di↵erent values of � and B providing the maximum

of Q depicted in Fig. 2 (a). In the homogeneous case � = 0, all the neurons are locked

synchronously to the input signal exhibiting a burst-type behaviour. For intermediate values

of �, the number of spikes during the bursting period decreases. Finally, for very large values

of �, a combination of bursting and persistent firing neurons appears due to the mechanism

discussed before (see bottom panel in Fig. 3). As a conclusion, the diversity strength

augmentation has a two-fold e↵ect on the sensing of the weak signal: on one hand the pool

of sensitive neurons grows and ensures less energy requirement for the detection while on

the other hand the emergence of incoherent spiking neurons decreases the signal to noise

ratio.

C. Influence of the coupling strength

A parameter having important e↵ects on network dynamics is the coupling strength

among neurons. Therefore, it is likely that the parameter g
syn

has an influence on the VR

in our considered system. In order to demonstrate the e↵ects of electrical coupling strength

more clearly, we have performed simulations for both homogeneous and heterogeneous pop-

ulations by considering di↵erent values of g
syn

. Obtained results are depicted in Fig.4 (a)-(b)

and in Fig.4 (c)-(d) for homogeneous and heterogeneous networks, respectively.

In a homogeneous network (� = 0), it is seen in Fig. 4 (a) that although the maximal

Q values do not change very much, the optimal energy level for the emergence of resonance

peaks increases steadily with g
syn

. This finding is summarized in Fig. 4 (b) which shows

that the dependence of B
opt

on g
syn

almost monotonically increases, indicating that the

required energy for the detection rises with the coupling strength. A similar e↵ect has also

been shown previously for the small-world and the modular networks of neurons [12]. Thus,

in homogeneous systems, it seems that the network topology does not have a significant

influence on VR performance when the coupling strength among units varies.

On the other hand, for the case of the heterogeneous population, we observe an interesting

e↵ect of g
syn

on the VR performance as depicted in Fig. 4 (c-d). When the coupling strength

is small in a heterogenous network, although the required energy level is the same compared

to the homogenous case, the resonance peak weakens (see g
syn

= 0.001 curves in Fig. 4

(a)and (c)). However, with the increase in g
syn

from small values, one can distinguish two
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Figure 4: The influence of electrical coupling strength on the emergence of VR in homogeneous

and heterogeneous neural networks. (a) Q versus B in homogeneous network (� = 0) for di↵erent

values of g
syn

. (b) The corresponding high frequency driving amplitude B
opt

in dependence on

g
syn

. (c) Q versus B in heterogeneous network (� = 0.01) for di↵erent values of g
syn

. (d) The

corresponding high frequency driving amplitude B
opt

in dependence on g
syn

.

di↵erent modes for the weak signal detection capability of the heterogenous population. In

the first mode, with the increase in g
syn

, the optimal high frequency driving amplitude for

the best response of the network decreases whereas the peak amplitudes of resonance curves

(Q
max

) increases. Further increase in g
syn

starts the second mode in which the location of

the resonance peaks on the B-axis gradually shifts to the right resulting in higher energy

requirements for the emergence of VR. At the same time, Q
max

remains almost constant as

g
syn

increases.

In view of these two regimes, it is evident that there exists an optimal value of the

coupling strength at g
syn

= 0.01, which guaranties the smallest B for an almost perfect

signal detection performance. This can be inferred nicely from Fig. 4 (d) depicting the
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resonance like dependence of B
opt

on g
syn

. Thus, we conclude that g
syn

plays a key role

in determining the capacity of the heterogeneous neuron population to have good signal

detection performances with less energy.

D. Influence of the topology

So far, we have only considered the heterogeneous SF network with the average degree

of k
avg

= 4. However, the average degree determines the interneuronal link density in a SF

network and has relevant e↵ects on the dynamics. It is therefore crucial to investigate the

e↵ect of k
avg

on the VR.

As clearly seen in Fig. 5 (a), with the increase in average degree k
avg

, while the optimal

amplitude of high frequency signal, B
opt

, slides towards higher B values, the weak signal

detection performance of the system does not change distinctly. In the light of these results,

we can say that the average degree has no prominent e↵ect on Q
max

for heterogeneous SF

networks. But if we consider B
opt

ensuring the best response, we deduce that the occurrence

of VR in a SF network requires more energy as the network is more densely connected

(meaning higher k
avg

).

These results are consistent with a recent study on stochastic resonance in a neuron

network with heterogeneous synapses [25]. The authors have stated that a rise in the

average degree also increases the optimal noise intensity conducting to the best coherence

between the weak input signal and the system response.

To clarify the role played by the topology in the VR we also have performed computations

for the following network configurations:

• Random Erdös-Renyi network,

• Small World network,

• Regular network.

For all these topologies the qualitive results of the resonance curves are similar to the SF

network as shown in Figs. 5 (a-d). First, the weak signal detection quality for the considered

topologies is nearly constant. Moreover, for all cases, the increase in k
avg

leads to a shift of
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Figure 5: E↵ect of interneuronal link density on VR in heterogeneous neural networks obtained

by fixed values of g
syn

= 0.01 and � = 0.01. The di↵erent networks topologies are: (a) Scale Free,

(b) Random ER, (c) Regular, and (d) Small World networks. It is clear that although the signal

detection performance does not change very much, heterogeneous system needs more energy with

the increase in number of connections in the network.

the optimal amplitude of the high-frequency driving B
opt

towards higher values of B. These

results provide good evidence that the performance (measured with the maximum of Q) of

VR in neuronal networks is independent from the topology whether it is highly or sparsely

connected. Also, regardless of network topology, an increase in k
avg

causes the same trend

in the resonance curves.

On the other hand, the required energy levels to obtain the same signal detection e�ciency

12



Figure 6: Optimal forcing B
opt

as a function of k
avg

for di↵erent network topology.

do depend on the network type. In Fig. 6, we plot the optimal amplitude B
opt

as a function

of the average degree k
avg

for all network models. It can be seen that although the B
opt

values are very similar at small k
avg

for each cases, significant di↵erences start to appear

between the SF topology and the others as k
avg

increases. For instance, SF network always

guarantees the smallest B
opt

for the weak signal processing while small-world and regular

networks need the highest B
opt

values.

From the analysis of these two figures we have therefore concluded that the network

topology has an impact on the energy e�ciency of the VR, whereas the quality of the

detection in terms of maximum of Q is not a↵ected.

IV. CONCLUSIONS

In conclusion, we have investigated the VR performance of FHN neurons interacting

through electrical coupling in a SF network. In contrast to previous works, where the

VR was only considered in homogeneous networks, we have mainly examined the e↵ects of

diversity (heterogeneity) on the VR phenomenon. With the aid of our findings presented in

the section III, we have shown that VR is a robust phenomenon occurring regardless of the

value of the diversity strength.

Moreover, the diversity in the excitability of the neurons enhances the detection of the

weak input signal at the cost of a lower amplification, that is, there is a tradeo↵ between

B
opt

and Q
max

. When compared with homogeneous networks, the heterogeneous network
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gives the opportunity for the neurons to detect the weak input signal by consuming less

energy.

In order to characterize what is the influence of the network on the previous results, we

have analyzed the role of the coupling strength and the average degree of the connectivity on

VR. For homogeneous networks, we have obtained that the value of B
opt

increases with the

coupling strength, while the maximum of Q remains almost constant. This result reveals

that the stronger the coupling strength, the more the energy is required for the optimal

sensing of weak input signal.

Meanwhile, for heterogeneous networks, there is a an optimal value of the coupling

strength for which B
opt

is minimal. It ensures the optimal detection of the weak input

signal with a minimal energy consumption. Besides, increasing the coupling strength first

enhances the peak of resonance until it reaches at saturation value.

Finally, we have analyzed the influences of the average degree on the VR in heterogeneous

networks. We have found that although increasing link density does not significantly change

the VR performance of the heterogeneous SF networks, it increases the high frequency signal

level for the optimal detection of weak input signal. In the context of link density e↵ects,

our findings are consistent with the results in [10] and [25]. Moreover we have corroborated

these results for di↵erent network topologies. The qualitative behavior ot the VR for the

heterogeneous network is independent of the network topology.
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