Examinando por Autor "Arrayás, Manuel"
Mostrando 1 - 3 de 3
- Resultados por página
- Opciones de ordenación
Ítem Empirical Evidence and Mathematical Modelling of Carbamazepine Degradative Kinetics by a Wood‑Rotting Microbial Consortium(Waste and Biomass Valorization, 2021-04-01) González-Benítez, Natalia; Molina, María del Carmen; Arrayás, ManuelAn experimental evolution system with a wood-rotting microbial consortium (BOS08) has demonstrated the acquisition of a new ability to exploit a previously untapped carbon source, such as the recalcitrant carbamazepine (CBZ). The improved extraction method has provided an accurate CBZ depletion rate from BOS08 of 2.14 ± 0.42 × 10−3 h −1. The consortium did not use cometabolism to process CBZ and the intermediate metabolite produced 10,11-dihydroxycarbamazepine was not pharmacologically active and toxic. The bacteria identification by massive sequencing (Illumina) confirmed the dominance of Proteobacteria Phylum such as genera Cupriavidus sp., Sphingomonas sp., Delftia sp., Acinetobacter sp. and Methylo- bacterium sp. coexisting through all biodegradation process. Based on biological principles, we model the consortium-CBZ kinetics with a set of nonlinear ordinary differential equations with logistic growth type terms. The use of experimental data combined with logistic growth models allow us to test new functional features acquired by the consortiumÍtem Machine learning techniques in magnetic levitation problems(Elsevier, 2022) Arrayás, Manuel; Trueba, José L.; Uriarte, CarlosWe present a method for calculating the stability region of a perfect diamagnet levitated in a magnetic field created by a circular current loop making use of the machine learning techniques. As an application we compute stability regions, points of stable equilibrium and stable oscillatory motions in two chip-based superconducting trap architectures used to levitate superconducting particles. Our procedure is an alternative to a full numerical scheme based on finite element methods which are expensive to implement for optimizing experimental parameters.Ítem The quest of null electromagnetics knots from Seifert fibration(Elsevier, 2022) Arrayás, Manuel; Tiemblo, Alfredo; Trueba, José L.In this work we find new null electromagnetic fields that are exact solutions of Maxwell equations in vacuum and generalize the hopfion. The hopfion is an exact solution of Maxwell equations in vacuum in which all the field lines (both electric and magnetic) are topologically equivalent to closed and linked circles, forming a mathematical structure called Hopf fibration. Here we present a generalization to include other field lines topology, such as the Seifert fibration in which the field lines form linked torus knots. Included in this generalization are fields that ergodically fill torus surfaces.