Logotipo del repositorio
Comunidades
Todo DSpace
  • English
  • Español
Iniciar sesión
  1. Inicio
  2. Buscar por autor

Examinando por Autor "Bettina M. J. Engelbrecht"

Seleccione resultados tecleando las primeras letras
Mostrando 1 - 2 de 2
  • Resultados por página
  • Opciones de ordenación
  • Cargando...
    Miniatura
    Ítem
    The hydraulic efficiency–safety trade‐off differs between lianas and trees
    (Wiley, 2019-02-24) Masha T. van der Sande; Lourens Poorter; Stefan A. Schnitzer; Bettina M. J. Engelbrecht; Lars Markesteijn
    Hydraulic traits are important for woody plant functioning and distribution. Associations among hydraulic traits, other leaf and stem traits, and species’ performance are relatively well understood for trees, but remain poorly studied for lianas. We evaluated the coordination among hydraulic efficiency (i.e., maximum hydraulic conductivity), hydraulic safety (i.e., cavitation resistance), a suite of eight morphological and physiological traits, and species’ abundances for saplings of 24 liana species and 27 tree species in wet tropical forests in Panama. Trees showed a strong trade-off between hydraulic efficiency and hydraulic safety, whereas efficiency and safety were decoupled in lianas. Hydraulic efficiency was strongly and similarly correlated with acquisitive traits for lianas and trees (e.g., positively with gas exchange rates and negatively with wood density). Hydraulic safety, however, showed no correlations with other traits in lianas, but with several in trees (e.g., positively with leaf dry matter content and wood density and negatively with gas exchange rates), indicating that in lianas hydraulic efficiency is an anchor trait because it is correlated with many other traits, while in trees both efficiency and safety are anchor traits. Traits related to shade tolerance (e.g., low specific leaf area and high wood density) were associated with high local tree sapling abundance, but not with liana abundance. Our results suggest that different, yet unknown mechanisms determine hydraulic safety and local-scale abundance for lianas compared to trees. For trees, the trade-off between efficiency and safety will provide less possibilities for ecological strategies. For lianas, however, the uncoupling of efficiency and safety could allow them to have high hydraulic efficiency, and hence high growth rates, without compromising resistance to cavitation under drought, thus allowing them to thrive and outperform trees under drier conditions.
  • Cargando...
    Miniatura
    Ítem
    Widespread variation in functional trait–vital rate relationships in tropical tree seedlings across a precipitation and soil phosphorus gradient
    (Wiley, 2022-10-26) Luke Browne; Lars Markesteijn; Eric Manzané‐Pinzón; S. Joseph Wright; Robert Bagchi; Bettina M. J. Engelbrecht; F. Andrew Jones; Liza S. Comita
    A fundamental assumption of functional ecology is that functional traits are related to interspecific variation in performance. However, the relationship between functional traits and performance is often weak or uncertain, especially for plants. A potential explanation for this inconsistency is that the relationship between functional traits and vital rates (e.g., growth and mortality) is dependent on local environmental conditions, which would lead to variation in trait-rate relationships across environmental gradients. In this study, we examined trait-rate relationships for six functional traits (seed mass, wood density, maximum height, leaf mass per area, leaf area, and leaf dry matter content) using long-term data on seedling growth and survival of woody plant species from eight forest sites spanning a pronounced precipitation and soil phosphorus gradient in central Panama. For all traits considered except for leaf mass per area-mortality, leaf mass per area-growth, and leaf area-mortality relationships, we found widespread variation in the strength of trait-rate relationships across sites. For some traits, trait-rate relationships showed no overall trend but displayed wide site-to-site variation. In a small subset of cases, variation in trait-rate relationships was explained by soil phosphorus availability. Our results demonstrate that environmental gradients have the potential to influence how functional traits are related to growth and mortality rates, though much variation remains to be explained. Accounting for site-to-site variation may help resolve a fundamental issue in trait-based ecology – that traits are often weakly related to performance – and improve the utility of functional traits for explaining key ecological and evolutionary processes.

© Universidad Rey Juan Carlos

  • Enviar Sugerencias