Logotipo del repositorio
Comunidades
Todo DSpace
  • English
  • Español
Iniciar sesión
  1. Inicio
  2. Buscar por autor

Examinando por Autor "Bondarev, Igor V."

Seleccione resultados tecleando las primeras letras
Mostrando 1 - 2 de 2
  • Resultados por página
  • Opciones de ordenación
  • Cargando...
    Miniatura
    Ítem
    Confinement-Induced Nonlocality and Casimir Force in Transdimensional Systems
    (The Royal Society of Chemistry, 2023-10-09) Bondarev, Igor V.; Pugh, Michael D.; Rodriguez-Lopez, Pablo; Woods, Lilia M.; Antezza, Mauro
    We study within the framework of the Lifshitz theory the long-range Casimir force for in-plane isotropic and anisotropic free-standing transdimensional material slabs. In the former case{,} we show that the confinement-induced nonlocality not only weakens the attraction of ultrathin slabs but also changes the distance dependence of the material-dependent correction to the Casimir force to go as contrary to the ∼1/l dependence of that of the local Lifshitz force. In the latter case{,} we use closely packed array of parallel aligned single-wall carbon nanotubes in a dielectric layer of finite thickness to demonstrate strong orientational anisotropy and crossover behavior for the inter-slab attractive force in addition to its reduction with decreasing slab thickness. We give physical insight as to why such a pair of ultrathin slabs prefers to stick together in the perpendicularly oriented manner{,} rather than in the parallel relative orientation as one would customarily expect.
  • Cargando...
    Miniatura
    Ítem
    Giant anisotropy and Casimir phenomena: The case of carbon nanotube metasurfaces
    (American Physical Society, 2024-01-17) Rodriguez-Lopez, Pablo; Le, Dai-Nam; Bondarev, Igor V.; Antezza, Mauro; Woods, Lilia M.
    The Casimir interaction and torque are related phenomena originating from the exchange of electromagnetic excitations between objects. While the Casimir force exists between any types of objects, the materials or geometrical anisotropy drives the emergence of the Casimir torque. Here both phenomena are studied theoretically between dielectric films with immersed parallel single wall carbon nanotubes in the dilute limit with their chirality and collective electronic and optical response properties taken into account. It is found that the Casimir interaction is dominated by thermal fluctuations at sub-micron separations, while the torque is primarily determined by quantum mechanical effects. This peculiar quantum vs. thermal separation is attributed to the strong influence of reduced dimensionality and inherent anisotropy of the materials. Our study suggests that nanostructured anisotropic materials can serve as novel platforms to uncover new functionalities in ubiquitous Casimir phenomena.

© Universidad Rey Juan Carlos

  • Enviar Sugerencias