Examinando por Autor "Busquets, Javier"
Mostrando 1 - 3 de 3
- Resultados por página
- Opciones de ordenación
Ítem Consistency and identifiability of football teams: a network science perspective(Nature, 2020-11-12) Garrido, David; Antequera, Daniel R.; Busquets, Javier; López del Campo, Roberto; Resta Serra, Ricardo; Jos Vielcazat, SilvestreWe investigated the ability of football teams to develop a particular playing style by looking at their passing patterns. Using the information contained in the pass sequences during matches, we constructed the pitch passing networks of teams, whose nodes are the divisions of the pitch for a given spatial scale and links account for the number of passes from region to region. We translated football passings networks into their corresponding adjacency matrices. We calculated the correlations between matrices of the same team to quantify how consistent the passing patterns of a given team are. Next, we quantified the differences with other teams’ matrices and obtained an identifiability parameter that indicates how unique are the passing patterns of a given team. Consistency and identifiability rankings were calculated during a whole season, allowing to detect those teams of a league whose passing patterns are different from the rest. Furthermore, we found differences between teams playing at home or away. Finally, we used the identifiability parameter to investigate what teams imposed their passing patterns over the rivals during a given match.Ítem Defining a historic football team: Using Network Science to analyze Guardiola’s F.C. Barcelona(Nature Research, 2019-09-19) Buldú, Javier; Busquets, Javier; Echegoyen, Ignacio; Seirul.lo, FranciscoThe application of Network Science to social systems has introduced new methodologies to analyze classical problems such as the emergence of epidemics, the arousal of cooperation between individuals or the propagation of information along social networks. More recently, the organization of football teams and their performance have been unveiled using metrics coming from Network Science, where a team is considered as a complex network whose nodes (i.e., players) interact with the aim of overcoming the opponent network. Here, we combine the use of different network metrics to extract the particular signature of the F.C. Barcelona coached by Guardiola, which has been considered one of the best teams along football history. We have first compared the network organization of Guardiola’s team with their opponents along one season of the Spanish national league, identifying those metrics with statistically significant differences and relating them with the Guardiola’s game. Next, we have focused on the temporal nature of football passing networks and calculated the evolution of all network properties along a match, instead of considering their average. In this way, we are able to identify those network metrics that enhance the probability of scoring/receiving a goal, showing that not all teams behave in the same way and how the organization Guardiola’s F.C. Barcelona is different from the rest, including its clustering coefficient, shortest-path length, largest eigenvalue of the adjacency matrix, algebraic connectivity and centrality distribution.Ítem Spatial and Temporal Entropies in the Spanish Football League: A Network Science Perspective(MDPI, 2020-02-02) Martínez, Johann H.; Garrido, David; Herrera-Diestra, José Luis; Busquets, Javier; Sevilla-Escoboza, Ricardo; Buldú, JavierWe quantified the spatial and temporal entropy related to football teams and their players by means of a pass-based interaction. First, we calculated the spatial entropy associated to the positions of all passes made by a football team during a match, obtaining a spatial entropy ranking of Spanish teams during the 2017/2018 season. Second, we investigated how the player’s average location in the field is related to the amount of entropy of his passes. Next, we constructed the temporal passing networks of each team and computed the deviation of their network parameters along the match. For each network parameter, we obtained the permutation entropy and the statistical complexity of its temporal fluctuations. Finally, we investigated how the permutation entropy (and statistical complexity) of the network parameters was related to the total number of passes made by a football team. Our results show that (i) spatial entropy changes according to the position of players in the field, and (ii) the organization of passing networks change during a match and its evolution can be captured measuring the permutation entropy and statistical complexity of the network parameters, allowing to identify what parameters evolve more randomly.