Examinando por Autor "Camacho, Mercedes"
Mostrando 1 - 3 de 3
- Resultados por página
- Opciones de ordenación
Ítem Enhanced endoplasmic reticulum and mitochondrial stress in abdominal aortic aneurysm(Portland Press, 2019-07-05) Navas-Madroñal, Miquel; Rodriguez, Cristina; Kassan, Modar; Fité, Joan; Escudero, José Román; Cañes, Laia; Martínez-González, J; Camacho, Mercedes; Galán, MaríaAbdominal aortic aneurysm (AAA) is a degenerative vascular disease with a complex aetiology that remains to be fully elucidated. Clinical management of AAA is limited to surgical repair, while an effective pharmacotherapy is still awaited. Endoplasmic reticulum (ER) stress and mitochondrial dysfunction have been involved in the pathogenesis of cardiovascular diseases (CVDs), although their contribution to AAA development is uncertain. Therefore, we aimed to determine their implication in AAA and investigated the profile of oxysterols in plasma, specifically 7-ketocholesterol (7-KC), as an ER stress inducer. In the present study, we determined aortic ER stress activation in a large cohort of AAA patients compared with healthy donors. Higher gene expression of activating transcription factor (ATF) 6 (ATF6), IRE-1, X-binding protein 1 (XBP-1), C/EBP-homologous protein (CHOP), CRELD2 and suppressor/enhancer of Lin-12-like (SEL1L) and greater protein levels of active ATF6, active XBP1 and of the pro-apoptotic protein CHOP were detected in human aneurysmatic samples. This was accompanied by an exacerbated apoptosis, higher reactive oxygen species (ROS) production and by a reduction in mitochondrial biogenesis in the vascular wall of AAA. The quantification of oxysterols, performed by liquid chromatography-(atmospheric pressure chemical ionization (APCI))-mass spectrometry, showed that levels of 7-KC were significantly higher while those of 7α-hydroxycholesterol (HC), 24-HC and 27-HC were lower in AAA patients compared with healthy donors. Interestingly, the levels of 7-KC correlate with the expression of ER stress markers. Our results evidence an induction of ER stress in the vascular wall of AAA patients associated with an increase in circulating 7-KC levels and a reduction in mitochondrial biogenesis suggesting their implication in the pathophysiology of this disease.Ítem Oxidative Stress and Inflammatory Markers in Abdominal Aortic Aneurysm.(MDPI, 2021-04-14) Sánchez-Infantes, David; Nus, Meritxell; Navas-Madroñal, Miquel; Pérez, Belén; Barros-Membrilla, Antonio José; Soto, Begoña; Martínez-González, José; Camacho, Mercedes; Rodriguez, Cristina; Mallat, Ziad; Galán, MaríaAbdominal aortic aneurysm (AAA) is increasing due to aging of the population and is a major cause of death among the elderly. Ultrasound screening programs are useful in early diagnosis, but aneurysm size is not always a good predictor of rupture. Our aim was to analyze the value of circulating molecules related to oxidative stress and inflammation as new biomarkers to assist the management of AAA. The markers were quantified by ELISA, and their expression in the aneurysmal wall was studied by real-time PCR and by immunostaining. Correlation analysis of the studied markers with aneurysm diameter and peak wall stress (PWS), obtained by finite element analysis, and multivariate regression analysis to assess potential confounding factors were performed. Our study shows an extensive inflammatory infiltration in the aneurysmal wall, mainly composed by T-cells, macrophages and B-cells and altered levels of reactive oxygen species (ROS), IgM, IgG, CD38, GDF15, S100A4 and CD36 in plasma and in the aneurysmal tissue of AAA patients compared with controls. Circulating levels of IgG, CD38 and GDF15 positively correlated with abdominal aortic diameter, and CD38 was correlated with PWS. Our data show that altered levels of IgG, CD38 and GDF15 have potential diagnostic value in the assessment of AAA.Ítem Role of the Scavenger Receptor CD36 in Accelerated Diabetic Atherosclerosis.(MDPI, 2020-10-05) Navas-Madroñal, Miquel; Castelblanco, Esmeralda; Camacho, Mercedes; Consegal, Marta; Ramirez-Morros, A; Sarrias, Maria Rosa; Pérez, P; Alonso, Nuria; Galán, María; Mauricio, DídacDiabetes mellitus entails increased atherosclerotic burden and medial arterial calcification, but the precise mechanisms are not fully elucidated. We aimed to investigate the implication of CD36 in inflammation and calcification processes orchestrated by vascular smooth muscle cells (VSMCs) under hyperglycemic and atherogenic conditions. We examined the expression of CD36, pro-inflammatory cytokines, endoplasmic reticulum (ER) stress markers, and mineralization-regulating enzymes by RT-PCR in human VSMCs, cultured in a medium containing normal (5 mM) or high glucose (22 mM) for 72 h with or without oxidized low-density lipoprotein (oxLDL) (24 h). The uptake of 1,1'-dioctadecyl-3,3,3',3-tetramethylindocarbocyanine perchlorate-fluorescently (DiI) labeled oxLDL was quantified by flow cytometry and fluorimetry and calcification assays were performed in VSMC cultured in osteogenic medium and stained by alizarin red. We observed induction in the expression of CD36, cytokines, calcification markers, and ER stress markers under high glucose that was exacerbated by oxLDL. These results were confirmed in carotid plaques from subjects with diabetes versus non-diabetic subjects. Accordingly, the uptake of DiI-labeled oxLDL was increased after exposure to high glucose. The silencing of CD36 reduced the induction of CD36 and the expression of calcification enzymes and mineralization of VSMC. Our results indicate that CD36 signaling is partially involved in hyperglycemia and oxLDL-induced vascular calcification in diabetes.