Examinando por Autor "Cavieres, Lohengrin"
Mostrando 1 - 2 de 2
- Resultados por página
- Opciones de ordenación
Ítem Every bit helps: The functional role of individuals in assembling any plant community, from the richest to monospecific ones(Wiley, 2021) Matesanz, Silvia; Escudero, Adrián; Valladares, Fernando; Cruz, Marcelino de la; Pescador, David; Cavieres, LohengrinPlant trait-based ecology is a powerful extension of the attempt of community ecologists to unveil assembly mechanisms. However, the two main expected determinants of community assembly, niche and neutral processes, can be confused under this framework. Here, we propose to move from trait-based to phenotype-based community ecology, accounting for the variation between individuals (phenotypes affected by the abiotic and biotic environment, and vice versa), and explicitly considering their ability to compete with or facilitate its neighbours. This would shift our focus from species’ niche responses to niche specialization of phenotypes, reducing the space for neutrality at the finest scales. The current assembly framework, based mainly on niche complementarity and using species-average functional traits, has been developed exploring mega-diverse communities, but it fails at describing poor plant communities. Under this framework, monospecificity would be interpreted as an arena where functionally similar individuals compete, consequently leading to regular patterns, which are rarely found in nature. Our niche specialization framework could help explaining coexistence in rich plant communities, where the higher fraction of functional variation is found between species, whereas the intraspecific trait variation dominates in poor species and monospecific communities. We propose a guide to conduct massive phenotyping at the community scale based on the use of visible and near-infrared spectroscopy. We also discuss the need to integrate the so-called plant's eye perspective based on the use of spatial pattern statistics in the current community ecology toolbox.Ítem Specialization patterns in symbiotic associations: A community perspective over spatial scales(Wiley, 2023-07-10) Rodríguez‐Arribas, Clara; Martínez, Isabel; Aragón, Gregorio; Zamorano‐Elgueta, Carlos; Cavieres, Lohengrin; Prieto, MariaSpecialization, contextualized in a resource axis of an organism niche, is a core concept in ecology. In biotic interactions, specialization can be determined by the range of interacting partners. Evolutionary and ecological factors, in combination with the surveyed scale (spatial, temporal, biological, and/or taxonomic), influence the conception of specialization. This study aimed to assess the specialization patterns and drivers in the lichen symbiosis, considering the interaction between the principal fungus (mycobiont) and the associated Nostoc (cyanobiont), from a community perspective considering different spatial scales. Thus, we determined Nostoc phylogroup richness and composition of lichen communities in 11 Nothofagus pumilio forests across a wide latitudinal gradient in Chile. To measure specialization, cyanobiont richness, Simpson's and d′ indices were estimated for 37 mycobiont species in these communities. Potential drivers that might shape Nostoc composition and specialization measures along the environmental gradient were analysed. Limitations in lichen distributional ranges due to the availability of their cyanobionts were studied. Turnover patterns of cyanobionts were identified at multiple spatial scales. The results showed that environmental factors shaped the Nostoc composition of these communities, thus limiting cyanobiont availability to establish the symbiotic association. Besides, specialization changed with the spatial scale and with the metric considered. Cyanolichens were more specialized than cephalolichens when considering partner richness and Simpson's index, whereas the d′ index was mostly explained by mycobiont identity. Little evidence of lichen distributional ranges due to the distribution of their cyanobionts was found. Thus, lichens with broad distributional ranges either associated with several cyanobionts or with widely distributed cyanobionts. Comparisons between local and regional scales showed a decreasing degree of specialization at larger scales due to an increase in cyanobiont richness. The results support the context dependency of specialization and how its consideration changes with the metric and the spatial scale considered. Subsequently, we suggest considering the entire community and widening the spatial scale studied as it is crucial to understand factors determining specialization