Examinando por Autor "Cuesta-Infante, Alfredo"
Mostrando 1 - 2 de 2
- Resultados por página
- Opciones de ordenación
Ítem Deep reinforcement learning for automated search of model parameters: photo-fenton wastewater disinfection case study(Springer, 2022) Hernández-García, Sergio; Cuesta-Infante, Alfredo; Moreno-SanSegundo, José Ángel; Montemayor, Antonio S.Numerical optimization solves problems that are analytically intractable at the cost of arriving at a sufficiently good but rarely optimal solution. To maximize the result, optimization algorithms are run with the guidance and supervision of a human, usually an expert in the problem. Recent advances in deep reinforcement learning motivate interest in an artificial agent capable of learning to do the expert’s task. Specifically, we present a proximal policy optimization agent that learns to optimize in a real case study such as the modeling of the photo-fenton disinfection process, which involves a number of parameters that have to be adjusted to minimize the error of the model with respect to the experimental data collected in several trials. The expert spends an average of 4 h to find a suitable set of parameters. On the other hand, the agent we present does not require a human expert to guide or validate the optimization procedure and achieves similar results in 2:5 less time.Ítem Visual classification of dumpsters with capsule networks(ACS, 2022) Garcia-Espinosa, Francisco J.; Concha, David; Pantrigo, Juan J.; Cuesta-Infante, AlfredoGarbage management is an essential task in the everyday life of a city. In many countries, dumpsters are owned and deployed by the public administration. An updated what-and-where list is in the core of the decision making process when it comes to remove or renew them. Moreover, it may give extra information to other analytics in a smart city context. In this paper, we present a capsule network-based architecture to automate the visual classification of dumpsters. We propose different network hyperparameter settings, such as reducing convolutional kernel size and increasing convolution layers. We also try several data augmentation strategies, as crop and flip image transformations. We succeed in reducing the number of network parameters by 85% with respect to the best previous method, thus decreasing the required training time and making the whole process suitable for low cost and embedded software architectures. In addition, the paper provides an extensive experimental analysis including an ablation study that illustrates the contribution of each component in the proposed method. Our proposal is compared with the state-of-the-art method, which is based on a Google Inception V3 architecture pretrained with Imagenet. Experimental results show that our proposal achieves a 95.35% accuracy, 2.35% over the previous best method.