Logotipo del repositorio
Comunidades
Todo DSpace
  • English
  • Español
Iniciar sesión
  1. Inicio
  2. Buscar por autor

Examinando por Autor "Fernandez-del-Olmo, Miguel"

Seleccione resultados tecleando las primeras letras
Mostrando 1 - 4 de 4
  • Resultados por página
  • Opciones de ordenación
  • Cargando...
    Miniatura
    Ítem
    Acute kinematic and neurophysiological effects of treadmill and overground walking in Parkinson’s disease
    (SAGE, 2019-06-20) Fernandez-Lago, Helena; Bello, Olalla; Salgado , AV; Fernandez-del-Olmo, Miguel
    BACKGROUND: The use of the treadmill as a gait rehabilitation tool has provided novel options for treatment of gait impairments in Parkinson's Disease (PD). However, the neural mechanisms underlying these therapeutic effects in PD remain unknown and whether any therapeutic effects from treadmill training can be reproduced on overground walking. OBJECTIVE: To examine the immediate short-term effects of a single session of treadmill and overground walking on gait, spinal and corticospinal parameters in PD.METHODSPD participants (N = 15) were evaluated in two separate sessions under two walking conditions: walking over a treadmill and walking overground. Overground walking performance, the Soleus H-reflex, Reciprocal Ia-Inhibition, Intracortical Facilitation (ICF) and Short Intracortical Inhibition (SICI), were evaluated before and after each condition. RESULTS: Gait speed and stride length improved in post-treadmill compared with pre-treadmill. No significant changes in these gait parameters were found for the pre vs. post-overground condition. ICF values and Hmax/Mmax ratio decreased after, compared with before, the two walking conditions. CONCLUSIONS: Treadmill walking, but not overground walking, lead to an improvement in the stride length and gait speed in the PD patients without evidence of different modulation on spinal and corticospinal parameters.
  • Cargando...
    Miniatura
    Ítem
    Differences in the effects of a startle stimulus on rate of force development between resistance-trained rock climbers and untrained individuals: Evidence for reticulospinal adaptations?
    (WILEY, 2023-03-23) Colomer-Poveda, David; Lopez-Rivera, Eva; Hortobagyi, Tibor; Márquez, Gonzalo; Fernandez-del-Olmo, Miguel
    The aim of the present cross-sectional study was to determine if chronic rock climbing and climbing-specific resistance training (RT) would modify the reticulospinal tract (RST) efficacy. Sixteen healthy, elite level climbers (CL; n = 16, 5 F; 29.8 ± 6.7 years) with 12 ± 7 years of climbing and climbing-specific RT experience and 15 healthy recreationally active participants (CON; n = 15, 4 F; 24.6 ± 5.9 years), volunteered for the study. We quantified RST efficacy by comparing the effects of a startle stimulus over reaction time (Rtime ) and measured rate of force development (RFD) and surface electromyography (sEMG) in representative muscles during powerful hand grip contractions. Both groups performed two Rtime tasks while performing rapid, powerful gripping with the right hand (Task 1) or during 3-s-long maximal voluntary right hand grip contractions in response to an imperative visual signal alone (V), or combined with a auditory-non startle stimulus (A) or/and startling auditory stimulus (S). We also tested the reproducibility of these responses on two separate days in CON. Intersession reliability ranged from 0.34 to 0.96 for all variables. The CL versus CON was 37% stronger (p = 0.003). The S stimulus decreased Rtime and increased RFD and sEMG in both groups during both tasks (all p < 0.001). Rtime was similar between groups in all conditions. However, CL had a greater RFD from 50 to 100 ms compared with CON only after the S stimulus in both tasks (p < 0.05, d = 0.85-0.96). The data tentatively suggest that chronic rock climbing and climbing-specific RT might improve RST efficacy, by increasing RST input to the α-motoneurons.
  • Cargando...
    Miniatura
    Ítem
    Small Enhancement of Bimanual Typing Performance after 20 Sessions of tDCS in Healthy Young Adults
    (PERGAMON-ELSEVIER SCIENCE LTD, 2021-05-08) Sevilla-Sánchez, Marta; Hortobágyi, Tibor; Fogelson, Noa; Iglesias-Soler, Eliseo; Carballeira, Eduardo; Fernandez-del-Olmo, Miguel
    Transcranial direct current stimulation (tDCS) is a non-invasive brain stimulation technique that may improve motor learning. However, the long-term effects of tDCS have not been explored, and the ecological validity of the evaluated tasks was limited. To determine whether 20 sessions of tDCS over the primary motor cortex (M1) would enhance the performance of a complex life motor skill, i.e., typing, in healthy young adults. Healthy young adults (n = 60) were semi-randomly assigned to three groups: the tDCS group (n = 20) received anodal tDCS over M1; the SHAM group (n = 20) received sham tDCS, both while performing a typing task; and the Control group (CON, n = 20) only performed the typing task. Typing speed and errors at maximum (mTT) and submaximal (iTT) speeds were measured before training, and after 10 and 20 sessions of tDCS. Every subject increased maximum typing speed after 10 and 20 tDCS sessions, with no significant differences (p > 0.05) between the groups. The number of errors at submaximal rates decreased significantly (p < 0.05) by 4% after 10 tDCS sessions compared with the 3% increase in the SHAM and the 2% increase in the CON groups. Between the 10th and 20th tDCS sessions, the number of typing errors increased significantly in all groups. While anodal tDCS reduced typing errors marginally, such performance-enhancing effects plateaued after 10 sessions without any further improvements in typing speed. These findings suggest that long-term tDCS may not have functionally relevant effects on healthy young adults' typing performance.
  • Cargando...
    Miniatura
    Ítem
    Test-retest reliability of stride length-cadence gait relationship in Parkinson’s disease
    (Elsevier, 2019-05-03) Ambrus, Mira; Sanchez-Molina, Jose Andrés; Fernandez-del-Olmo, Miguel
    INTRODUCTION: The gait pattern in Parkinson´s disease (PD) subjects is characterized by a specific deficit of the internal regulation of the stride length (SL), while the control of the cadence (Cad) remains intact. The purpose of the present study was to evaluate the reliability of the stride length-cadence relationship (SLCrel) in a group of PD subjects. METHODS: Thirty five PD subjects performed two sessions, separated by a three month resting period. In each session Gait speed, SL and Cad were evaluated at five different self-selected speed conditions: preferred, slow, very slow, fast and very fast. Linear regression analysis was used to explore the SLCrel and to determine the slope, intercept and coefficient of determination (R2) for each participant. Test-retest reliability for the slope and intercept was calculated using intra-class correlation coefficient (ICC), 95% confidence interval (CI), and standard error of mean (SEM). RESULTS: There were no significant differences in the slope and intercept between the two sessions. The overall speed was significantly faster in the second session compared with the first one (F = 4.60, p = 0.03). The SLCrel showed high reliability across the sessions (ICC = 0.89 and ICC = 0.91; 95% CI = 0.80-0.95 and 95% CI = 0.82-0.95; SEM = 0.002 and SEM = 0.073, for the slope and interception, respectively). CONCLUSIONS: The SLCrel in Parkinsonian gait is a reproducible measure across a period of three months, and may be a useful tool to explore the specificity of gait rehabilitation interventions in PD subjects.

© Universidad Rey Juan Carlos

  • Enviar Sugerencias