Examinando por Autor "Francisco, Mercado"
Mostrando 1 - 2 de 2
- Resultados por página
- Opciones de ordenación
Ítem Causal computations of supplementary motor area on spatial impulsivity(Nature Research, 2024-07-24) Alberto, Carpio; Jean-Claude, Dreher; David , Ferrera; Diego, Galán; Francisco, Mercado; Ignacio, ObesoSpatial proximity to important stimuli often induces impulsive behaviour. How we overcome impulsive tendencies is what determines behaviour to be adaptive. Here, we used virtual reality to investigate whether the spatial proximity of stimuli is causally related to the supplementary motor area (SMA) functions. In two experiments, we set out to investigate these processes using a virtual environment that recreates close and distant spaces to test the causal contributions of the SMA in spatial impulsivity. In an online first experiment (N = 93) we validated and measured the influence of distant stimuli using a go/no-go task with close (21 cm) or distant stimuli (360 cm). In experiment 2 (N = 28), we applied transcranial static magnetic stimulation (tSMS) over the SMA (double-blind, crossover, sham-controlled design) to test its computations in controlling impulsive tendencies towards close vs distant stimuli. Reaction times and error rates (omission and commission) were analysed. In addition, the EZ Model parameters (a, v, Ter and MDT) were computed. Close stimuli elicited faster responses compared to distant stimuli but also exhibited higher error rates, specifically in commission errors (experiment 1). Real stimulation over SMA slowed response latencies (experiment 2), an effect mediated by an increase in decision thresholds (a). Current findings suggest that impulsivity might be modulated by spatial proximity, resulting in accelerated actions that may lead to an increase of inaccurate responses to nearby objects. Our study also provides a first starting point on the role of the SMA in regulating spatial impulsivity.Ítem Long-term findings on working memory neural dynamics in healthcare workers after mild COVID-19(Elsevier, 2024-05) Ferrera, David; Galán, Diego; Peláez, Irene; Carpio, Alberto; María del Carmen, Martín-Buro; Francisco, MercadoObjective Understanding the long-term impact of Coronavirus Disease 2019 (COVID-19) on cognitive function, even in mild cases, is critical to the well-being of individuals, especially for healthcare workers who are at increased risk of exposure to the virus. To the best of our knowledge, the electrophysiological activity underlying cognitive functioning has not yet been explored. Methods Seventy-seven healthcare workers took part in the study (43 with mild infection about one year before the study and 34 uninfected). To assess cognitive status, event-related potentials (ERPs) and behavioural responses were recorded while participants performed a working memory task. Results COVID-19 participants exhibited a distinct neural pattern with lower parieto-occipital N1 amplitudes and higher frontal P2 amplitudes as compared to non-infected healthcare workers. We found no behavioural differences (reaction times and error rates) in working memory functioning between groups. Conclusions This neural pattern suggests the presence of a decrement of processing resources linked to the encoding of sensory information (N1), followed by the enhanced of the P2 response which could be interpreted as the activation of compensation mechanism in COVID-19 participants. Significance The current findings point out that ERPs could serve as valuable neural indices for detecting distinctive patterns in working memory functioning of COVID-19 participants, even in mild cases. However, further research is required to precisely ascertain the long-term cognitive effects of COVID-19 beyond one-year post-infection.