Examinando por Autor "Jiang, Xi"
Mostrando 1 - 2 de 2
- Resultados por página
- Opciones de ordenación
Ítem Azotobacter vinelandii scaffold protein NifU transfers iron to NifQ as part of the iron-molybdenum cofactor biosynthesis pathway for nitrogenase(Elsevier, 2024-10-22) Barahona , Emma; Collanstes García, Juan Andrés; Rosa-Núñez, Elena; Xiong, Jin; Jiang, Xi; Jiménez-Vicente, Emilio; Echávarri-Erasun, Carlos; Guo, Yisong; Rubio, Luis M; González-Guerrero, ManuelThe Azotobacter vinelandii molybdenum nitrogenase obtains molybdenum from NifQ, a monomeric iron-sulfur molybdoprotein. This protein requires an existing [Fe-S] cluster to form a [Mo-Fe3-S4] group, which acts as a specific molybdenum donor during nitrogenase FeMo-co biosynthesis. Here, we show biochemical evidence supporting the role of NifU as the [Fe-S] cluster donor. Protein-protein interaction studies involving apo-NifQ and as-isolated NifU demonstrated their interaction, which was only effective when NifQ lacked its [Fe-S] cluster. Incubation of apo-NifQ with [Fe4-S4]-loaded NifU increased the iron content of the former, contingent on both proteins being able to interact with one another. As a result of this interaction, a [Fe4-S4] cluster was transferred from NifU to NifQ. In A. vinelandii, NifQ was preferentially metalated by NifU rather than by the [Fe-S] cluster scaffold protein IscU. These results indicate the necessity of co-expressing NifU and NifQ to efficiently provide molybdenum for FeMo-co biosynthesis when engineering nitrogenase in plants.Ítem Functional nitrogenase cofactor maturase NifB in mitochondria and chloroplasts of Nicotiana benthamiana(American Society for Microbiology, 2022-06-13) Jiang, Xi; Coroian, Diana; Barahona, Emma; Echavarri-Erasun, Carlos; Castellanos-Rueda, Rocío; Eseverri, Álvaro; Aznar-Moreno, Jose; Buren, Stefan; Rubio, Luis ManuelEngineering plants to synthesize nitrogenase and assimilate atmospheric N2 will reduce crop dependency on industrial N fertilizers. This technology can be achieved by expressing prokaryotic nitrogen fixation gene products for the assembly of a functional nitrogenase in plants. NifB is a critical nitrogenase component since it catalyzes the first committed step in the biosynthesis of all types of nitrogenase active-site cofactors. Here, we used a library of 30 distinct nifB sequences originating from different phyla and ecological niches to restore diazotrophic growth of an Azotobacter vinelandii nifB mutant. Twenty of these variants rescued the nifB mutant phenotype despite their phylogenetic distance to A. vinelandii. Because multiple protein interactions are required in the iron-molybdenum cofactor (FeMo-co) biosynthetic pathway, the maturation of nitrogenase in a heterologous host can be divided in independent modules containing interacting proteins that function together to produce a specific intermediate. Therefore, nifB functional modules composed of a nifB variant, together with the A. vinelandii NifS and NifU proteins (for biosynthesis of NifB [Fe4S4] clusters) and the FdxN ferredoxin (for NifB function), were expressed in Nicotiana benthamiana chloroplasts and mitochondria. Three archaeal NifB proteins accumulated at high levels in soluble fractions of chloroplasts (Methanosarcina acetivorans and Methanocaldococcus infernus) or mitochondria (M. infernus and Methanothermobacter thermautotrophicus). These NifB proteins were shown to accept [Fe4S4] clusters from NifU and were functional in FeMo-co synthesis in vitro. The accumulation of significant levels of soluble and functional NifB proteins in chloroplasts and mitochondria is critical to engineering biological nitrogen fixation in plants.