Examinando por Autor "Leander, Brian S."
Mostrando 1 - 4 de 4
- Resultados por página
- Opciones de ordenación
Ítem A new case of kleptoplasty in animals: marine flatworms steal functional plastids from diatoms(American Association for the Advancement of Science, 2019-07) Van Steenkiste, Niels W. L.; Stephenson, India; Herranz, Maria; Filip, Husnik; Keeling, P. J.; Leander, Brian S.To date, sea slugs have been considered the only animals known to sequester functional algal plastids into their own cells, via a process called “kleptoplasty.” We report here, however, that endosymbionts in the marine flatworms Baicalellia solaris and Pogaina paranygulgus are isolated plastids stolen from diatoms. Ultrastructural data show that kleptoplasts are located within flatworm cells, while algal nuclei and other organelles are absent. Transcriptomic analysis and rbcL amplicons confirm the absence of algal nuclear mRNA and reveal that the plastids originate from different species of diatoms. Laboratory experiments demonstrated photosynthetic activity and short-term retention of kleptoplasts in starved worms. This lineage of flatworms represents the first known case of functional kleptoplasty involving diatoms and only the second known case of kleptoplasty across the entire tree of animals.Ítem Microbiomes of microscopic marine invertebrates do not reveal signatures of phylosymbiosis(Nature Research, 2022-05) Boscaro, Vittorio; Holt, Corey C.; Van Steenkiste, Niels W. L.; Herranz, Maria; Irwin, Nick A. T.; Álvarez-Campos, Patricia; Grzelak, Kasia; Holovachov, Oleksander; Kerbl, Alexandra; Mathur, Varsha; Okamoto, Noriko; Piercey, Rebecca S.; Worsaae, Katrine; Leander, Brian S.; Keeling, P. J.Animals and microorganisms often establish close ecological relationships. However, much of our knowledge about animal microbiomes comes from two deeply studied groups: vertebrates and arthropods. To understand interactions on a broader scale of diversity, we characterized the bacterial microbiomes of close to 1,000 microscopic marine invertebrates from 21 phyla, spanning most of the remaining tree of metazoans. Samples were collected from five temperate and tropical locations covering three marine habitats (sediment, water column and intertidal macroalgae) and bacterial microbiomes were characterized using 16S ribosomal RNA gene sequencing. Our data show that, despite their size, these animals harbour bacterial communities that differ from those in the surrounding environment. Distantly related but coexisting invertebrates tend to share many of the same bacteria, suggesting that guilds of microorganisms preferentially associated with animals, but not tied to any specific host lineage, are the main drivers of the ecological relationship. Host identity is a minor factor shaping these microbiomes, which do not show the same correlation with host phylogeny, or ‘phylosymbiosis’, observed in many large animals. Hence, the current debate on the varying strength of phylosymbiosis within selected lineages should be reframed to account for the possibility that such a pattern might be the exception rather than the rule.Ítem Myoanatomy of three aberrant kinorhynch species: similar but different?(Springer, 2021-02) Herranz, Maria; Worsaae, Katrine; Park, Taeseo; Di Domenico, Maikon; Leander, Brian S.; Sørensen, Martin V.Aberrant kinorhynchs show several modifications deviating from the typical kinorhynch body plan, including a modified introvert with very elongated and flexible scalids, a weakly developed neck, and a slender trunk with less distinct segmentation. How these aberrant external features are reflected in the inner anatomy and how their aberrant body plan evolved are not understood. Here, we provide a comprehensive and comparative myoanatomical study of three putatively, distantly related worm-like species: Cateria styx, Franciscideres kalenesos and Zelinkaderes yong. Despite the weak external segmentation of the trunk, the studied species show a distinct segmental arrangement of the musculature. However, this arrangement is shifted posteriorly with respect to the external segmentation, because the extremely thin and flexible cuticle is lacking the apodeme-like cuticular thickenings (pachycycli) where the longitudinal muscles usually attach. The muscular arrangement in the three species is overall similar, yet, C. styx shows most resemblance to the allomalorhagid F. kalenesos, whereas the cyclorhagid Z. yong differs in several ways. This suggests a closer relationship of C. styx to Allomalorhagida. Whereas most kinorhynchs prefer muddy sediments, both the allomalorhagid and cyclorhagid worm-like kinorhynchs are mainly found in sandy environments, suggesting that a flexible, slender body evolved at least twice independently as an adaptation to the interstitial environment.Ítem Neuroanatomy of Mud dragons: a comprehensive view of the nervous system in Echinoderes (Kinorhyncha) by confocal laser scanning microscopy.(Springer, 2019-10) Herranz, Maria; Leander, Brian S.; Pardos, Fernando; Boyle, Michael J.Background: The Scalidophora (Kinorhyncha, Loricifera and Priapulida) have an important phylogenetic position as early branching ecdysozoans, yet the architecture of their nervous organ systems is notably underinvestigated. Without such information, and in the absence of a stable phylogenetic context, we are inhibited from producing adequate hypotheses about the evolution and diversification of ecdysozoan nervous systems. Here, we utilize confocal laser scanning microscopy to characterize serotonergic, tubulinergic and FMRFamidergic immunoreactivity patterns in a comparative neuroanatomical study with three species of Echinoderes, the most speciose, abundant and diverse genus within Kinorhyncha. Results: Neuroanatomy in Echinoderes as revealed by acetylated α-tubulin immunoreactivity includes a circumpharyngeal brain and ten neurite bundles in the head region that converge into five longitudinal nerves within the trunk. The ventral nerve cord is ganglionated, emerging from the brain with two connectives that converge in trunk segments 2–3, and diverge again within segment 8. The longitudinal nerves and ventral nerve cord are connected by two transverse neurites in segments 2–9. Differences among species correlate with the number, position and innervation of cuticular structures along the body. Patterns of serotoninergic and FMRFamidergic immunoreactivity correlate with the position of the brain neuropil and the ventral nerve cord. Distinct serotonergic and FMRFamidergic somata are associated with the brain neuropil and specific trunk segments along the ventral nerve cord. Conclusions: Neural architecture is highly conserved across all three species, suggesting that our results reveal a pattern that is common to more than 40%of the species within Kinorhyncha. The nervous system of Echinoderes is segmented along most of the trunk; however, posterior trunk segments exhibit modifications that are likely associated with sensorial, motor or reproductive functions. Although all kinorhynchs show some evidence of an externally segmented trunk, it is unclear whether external segmentation matches internal segmentation of nervous and muscular organ systems across Kinorhyncha, as we observed in Echinoderes. The neuroanatomical data provided in this study not only expand the limited knowledge on kinorhynch nervous systems but also establish a comparative morphological framework within Scalidophora that will support broader inferences about the evolution of neural architecture among the deepest branching lineages of the Ecdysozoa.