Examinando por Autor "Liu, Yong"
Mostrando 1 - 2 de 2
- Resultados por página
- Opciones de ordenación
Ítem A wider spectrum of avoidance and tolerance mechanisms explained ozone sensitivity of two white poplar ploidy levels(Oxford, 2023-01-24) Wang, Miaomiao; Li, Guolei; Feng, Zhaozhong; Liu, Yong; Uscola Fernández, MercedesBackground and Aims Polyploidization can improve plant mass yield for bioenergy support, yet few studies have investigated ozone (O3) sensitivity linked to internal regulatory mechanisms at different ploidy levels. Methods Diploid and triploid Populus tomentosa plants were exposed to ambient and ambient plus 60 ppb [O3]. We explored their differences in sensitivity (leaf morphological, physiological and biochemical traits, and plant mass) as well as mechanisms of avoidance (stomatal conductance, xanthophyll cycle, thermal dissipation) and tolerance (ROS scavenging system) in response to O3 at two developmental phases. Key Results Triploid plants had the highest plant growth under ambient O3, even under O3 fumigation. However, triploid plants were the most sensitive to O3 and under elevated O3 showed the largest decreases in photosynthetic capacity and performance, as well as increased shoot:root ratio, and the highest lipid peroxidation. Thus, plant mass production could be impacted in triploid plants under long-term O3 contamination. Both diploid and triploid plants reduced stomatal aperture in response to O3, thereby reducing O3 entrance, yet only in diploid plants was reduced stomatal aperture associated with minimal (non-significant) damage to photosynthetic pigments and lower lipid peroxidation. Conclusions Tolerance mechanisms of plants of both ploidy levels mainly focused on the enzymatic reduction of hydrogen peroxide through catalase and peroxidase, yet these homeostatic regulatory mechanisms were higher in diploid plants. Our study recommends triploid white poplar as a bioenergy species only under short-term O3 contamination. Under continuously elevated O3 over the long term, diploid white poplar may perform better.Ítem Uptake of nitrogen forms by diploid and triploid white poplar depends on seasonal carbon use strategy and elevated summer ozone(Oxford, 2021-10-26) Wang, Miaomiao; Li, Guolei; Feng, Zhaozhong; Liu, Yong; Xu, Yansen; Uscola Fernández, MercedesThe ability of plants to acquire soil nitrogen (N) sources is plastic in response to abiotic and biotic factors. However, information about how plant preferences among N forms changes in response to internal plant N demand through growth phases, or to environmental stress such as ozone (O3), is scarce. Diploid and triploid Chinese white poplar were used to investigate N form preferences at two key developmental periods (spring, summer) and in response to summer O3 (ambient, 60 ppb above ambient). We used stable isotopes to quantify NH4+, NO3− and glycine N-uptake rates. Carbon acquisition was recorded simultaneously. Both ploidy levels differed in growth, N form preferences, and N and C use strategies. Diploid white poplars grew faster in spring but slower in summer compared with triploids. Diploid white poplars also showed plasticity among N form preferences through the season, with no preferences in spring, and NO3− preferred in summer, while triploids showed an overall preference for NO3−. Carbon acquisition and NO3− uptake were inhibited in both ploidy levels of poplar at elevated O3, which also reduced diploid total N uptake. However, triploid white poplars alleviated N uptake reduction, switching to similar preferences among N forms. We conclude that N form preferences by white poplar are driven by internal C and N use in response to nutrient demands, and external factors such as O3.