Examinando por Autor "Lobato, David"
Mostrando 1 - 2 de 2
- Resultados por página
- Opciones de ordenación
Ítem Open-source ROS-based simulation for verification of FPGA robotics applications(Elsevier, 2025-03-11) Nieto, Rubén; Machado, Felipe; Fernández-Conde, Jesús; Lobato, David; Cañas, José M.FPGAs are increasingly incorporated in many high-end robotics applications, often involving computer vision and motor control. However, functional verification of FPGA designs is labor-intensive, time-consuming, and consequently expensive. Moreover, validation of complex systems, such as robots, poses even further challenges because neither the external interactions can be easily modeled with traditional testbenches nor the robot’s response can be adequately observed and ascertained. This work presents a new methodology that validates the robot’s behavior in a realistic simulated environment before transferring the design to the physical robot and the onboard FPGA. This methodology allows integral, fast, and flexible debugging cycles of robotics applications by integrating the functional simulation of the processing unit (FPGA) with the simulation of the robot, its environment, and their mutual interconnections. The Verilator simulation tool is used for fast Verilog/SystemVerilog verification and simulation. ROS, the standard robotics middleware, and Gazebo 3D robotics simulator are used for realistic robot simulation, including a robust physics engine. We have implemented several open-source software extensions to interconnect the Verilog circuit with the simulated ROS sensors and actuators. This methodology’s utility and correctness have been assessed by developing a complete proof-of-concept FPGA-based robotics application in which a commercial robot follows a colored object using its onboard camera and differential drive motors. This work establishes the foundations for developing and testing complex robot FPGA-based modules more efficiently and flexibly.Ítem Vision-based robotics using open FPGAs(Elsevier, 2023) Machado, Felipe; Nieto, Rubén; Fernández-Conde, Jesús; Lobato, David; Cañas, José M.Robotics increasingly provides practical applications for society, such as manufacturing, autonomous driving, robot vacuum cleaners, robots in logistics, drones for inspection, etc. Typical requirements in this field are fast response time, low power consumption, parallelism, and flexibility. According to these features, FPGAs are a suitable computing substrate for robots. A few vendors have dominated the FPGA market with their proprietary tools and hardware devices, resulting in fragmented ecosystems with few standards and little interoperation. New and complete open toolchains for FPGAs are emerging from the open-source community. This article presents an open-source library of Verilog modules useful for vision-based robots, including reusable image processing blocks for perception and reactive control blocks. This library has been developed using open tools, but its Verilog modules are fully compatible with any proprietary toolchain. In addition, three applications with a real robot and open FPGAs have been developed for experimental validation using this library. In the last application, the mobile robot successfully follows a colored object using two low-cost cameras (to increase the robot’s field of view) and includes a third camera on top of a servo-driven turret for tracking a second independent object while following the first one in parallel. Resource consumption of all applications has been measured and compared with state-of-the-art proprietary toolchains, revealing that reconfigurable computing with open FPGAs using open tools is now an attractive alternative to designing and creating intelligent vision-based robotic applications using vendor-dependent proprietary tools and FPGAs.