Examinando por Autor "Márquez, Álvaro"
Mostrando 1 - 3 de 3
- Resultados por página
- Opciones de ordenación
Ítem Contrasting catastrophic eruptions predicted by different intrusion and collapse scenarios(Nature, 2018-04-18) Rincón, Marta; Márquez, Álvaro; Herrera, Raquel; Alonso-Torres, Ana; Granja-Bruña, Jose Luis; van Wyk de Vries, BenCatastrophic volcanic eruptions triggered by landslide collapses can jet upwards or blast sideways. Magma intrusion is related to both landslide-triggered eruptive scenarios (lateral or vertical), but it is not clear how such different responses are produced, nor if any precursor can be used for forecasting them. We approach this problem with physical analogue modelling enhanced with X-ray Multiple Detector Computed Tomography scanning, used to track evolution of internal intrusion, and its related faulting and surface deformation. We find that intrusions produce three different volcano deformation patterns, one of them involving asymmetric intrusion and deformation, with the early development of a listric slump fault producing pronounced slippage of one sector. This previously undescribed early deep potential slip surface provides a unified explanation for the two different eruptive scenarios (lateral vs. vertical). Lateral blast only occurs in flank collapse when the intrusion has risen into the sliding block. Otherwise, vertical rather than lateral expansion of magma is promoted by summit dilatation and flank buttressing. The distinctive surface deformation evolution detected opens the possibility to forecast the possible eruptive scenarios: laterally directed blast should only be expected when surface deformation begins to develop oblique to the first major fault.Ítem Monitoring Volcanic and Tectonic Sandbox Analogue Models Using the Kinect v2 Sensor(Wiley, 2022-05-06) Rincón, Marta; Márquez, Álvaro; Herrera, Raquel; Galland, Olivier; Sánchez Oro, Jesús; Concha, David; Montemayor, Antonio SThe measurement of surface deformation in analogue models of volcanic and tectonic processes is an area in continuous development. Properly quantifying topography change in analogue models is key for a useful comparison between experiment results and nature. The aim of this work is to evaluate the capabilities of the simple and cheap MicrosoftR Kinect v2 sensor for monitoring analogue models made of granular materials. MicrosoftR Kinect v2 is a video-gaming RedGreenBlue-Depth device combining an optical camera and an infrared distance measurement sensor. The precision of the device for model topography measurements has been quantified using 64 experiments, with variable granular materials materials and distance to the model. Additionally, we tested the capabilities of averaging several distance images to increase the precision. We have developed a specific software to facilitate the acquisition and processing of the Kinect v2 data in experiment monitoring. Our results show that measurement precision is material dependent: with clear-colored and finegrained materials, a precision ∼1.0 mm for digital elevation models with a 1.6 mm pixel size can be obtained. We show that by averaging ≥5 consecutive images the distance precision can reach values as low as 0.5 mm. To show the Kinect v2 capabilities, we present monitoring results from case study experiments modelling tectonics and volcano deformation. The Kinect v2 achieves lower spatial resolutions and precision than moresophisticated techniques such as photogrammetry. However, Kinect v2 provides a cheap, straightforward and powerful tool for monitoring the topography changes in sandbox analogue models.Ítem Morpho‑structural criteria for the identification of spreading‑induced deformation processes potentially compromising stratovolcano stability(Springer, 2023-02-26) Rincón, Marta; Márquez, Álvaro; Herrera, Raquel; Martín González, Fidel; López, Iván; Crespo Martín, CristinaCharacterisation of surface deformation at stratovolcanoes is essential for a better understanding of the processes that can compromise edifice structural stability and potential for flank collapse. Spreading produced by the presence of a hydrothermal system or intrusion of a viscous magma body can produce similar deformation signatures, and both processes have implications for flank instability. In this work, we perform analogue models and consider examples from real volcanoes (Damavand, Ubinas, Semeru and Casita) so as to characterise and recognise surface deformation patterns produced by spreading due to the presence of a hydrothermal system and in response to magma intrusion. The experiments show that there are differences in the resulting surface deformation associated with each process. Magma intrusion results in a sharp transition between areas of subsidence and uplift, and is associated with faults with oblique strikes in the upper part of the edifice. Instead, asymmetric flank spreading is associated with hydrothermal system and results in flank bulging close to the base of the edifice. Although laboratory analogue models show different deformation responses that could be diagnostic of the associated processes, application in the field is difficult as often these diagnostic features are not preserved during evolution. However, basal bulging represents a potential diagnostic for the identification of asymmetric volcano flank spreading associated with hydrothermal activity, and the potential for instability. Remote sensing techniques can allow identification of such surface deformation features, providing a useful tool for hazard assessment and design of monitoring strategies at potentially unstable volcanoes.