Examinando por Autor "Martínez-Díaz, David"
Mostrando 1 - 2 de 2
- Resultados por página
- Opciones de ordenación
Ítem Direct Synthesis of MOF-74 Materials on Carbon Fiber Electrodes for Structural Supercapacitors(MDPI, 2024-01-20) Martínez-Díaz, David; Leo, Pedro; Martín Crespo, David; Sánchez, María; Ureña, AlejandroThe use of fossil fuels has contributed significantly to environmental pollution and climate change. For this reason, the development of alternative energy storage devices is key to solving some of these problems. The development of lightweight structures can significantly reduce the devices’ weight, thereby reducing energy consumption and emissions. Combining lightweight structures with alternative energy storage technologies can further improve efficiency and performance, leading to a cleaner and more sustainable system. In this work, for the first time, MOF-74 materials with different divalent metal ions have been synthesized directly on carbon fiber, one of the most widely used materials for the preparation of electrodes for supercapacitors with structural properties. Different techniques, such as nitrogen adsorption–desorption isotherms, cyclic voltammetry or galvanostatic charge–discharge, among others, were used to evaluate the influence of the metal cation on the electrochemical capacitance behavior of the modified electrodes. The Co-MOF-74 material was selected as the best modification of the carbon fibers for their use as electrodes for the fabrication of structural supercapacitors. The good electrochemical performance shown after the incorporation of MOF materials on carbon fibers provides a viable method for the development of carbon fiber electrodes, opening a great variety of alternatives.Ítem MOF-derived α-Fe2O3@Fe3O4 on carbon fiber fabric for lithium-ion anode applications(Elsevier, 2024-06-15) González-Banciella, Andrés; Martínez-Díaz, David; Prado, Javier de; Utrilla, María Victoria; Sánchez, María; Ureña, AlejandroOwing to the current development in emerging fields as electric motoring, biomedical sensors or new generation of mobile phones, new functionalities are required for the new generation of Li-ion batteries as flexibility or structurality. Thus, Metal-Organic Framework (MOF)-derived α-Fe2O3@Fe3O4 coating on carbon fiber fabric has been developed in this study for Lithium-ion battery anode purposes. MOF-derived synthesis is a well-known strategy to obtain Transition Metal Oxides (TMOs) which better electrochemical performance than bare TMOs. On the other hand, synthesis on carbon fiber fabric allows to develop new electrodes for multifunctional energy storage devices in which the coating provides high specific capacity, while the carbon fiber substrate provides stiffness but high flexibility, mechanical strength, and electrical conductivity. This TMO coating was achieved by a novel MOF MIL-100 direct synthesis on carbon fiber and subsequent calcination, the effects of calcination on the composition, texture and morphology of the coating, as well as its electrochemical performance, were studied. As the best result, calcinated samples during 2 h showed the optimal synergic effects between the coating and carbon fiber, exhibiting a specific capacity of 328.6 mAh/g at 25 mA/g, an excellent rate capability and a capacity retention of 89.7 % after 100 galvanostatic charge-discharge cycles. Nevertheless, it is important to note that the novelty of this work is not only based on the electrochemical performance but also on the novel synthesis of MIL-100 directly over the carbon fibers. This novel synthesis opens the way to new variety of TMO coatings for electrodes of all-solid-state energy storage devices