Examinando por Autor "Mirones, Isabel"
Mostrando 1 - 1 de 1
- Resultados por página
- Opciones de ordenación
Ítem Combination of Single-Photon Emission Computed Tomography and Magnetic Resonance Imaging to Track 111In-Oxine–Labeled Human Mesenchymal Stem Cells in Neuroblastoma-Bearing Mice(Sage, 2014-12-01) Cussó, Lorena; Mirones, Isabel; Peña-Zalbidea, Santiago; García-Vázquez, Verónica; García-Castro, Javier; Desco, ManuelHoming is an inherent, complex, multistep process performed by cells such as human bone marrow mesenchymal stem cells (hMSCs) to travel from a distant location to inflamed or damaged tissue and tumors. This ability of hMSCs has been exploited as a tumortargeting strategy in cell-based cancer therapy. The purpose of this study was to investigate the applicability of 111In-oxine for tracking hMSCs in vivo by combining single-photon emission computed tomography (SPECT) and magnetic resonance imaging (MRI). 111In-labeled hMSCs (10^6 cells) were infused intraperitoneally in neuroblastoma-bearing mice, whereas a control group received a dose of free 111In-oxine. SPECT and MRI studies were performed 24 and 48 hours afterwards. Initially, the images showed similar activity in the abdomen in both controls and hMSC-injected animals. In general, abdominal activity decreases at 48 hours. hMSC-injected animals showed increased uptake in the tumor area at 48 hours, whereas the control group showed a low level of activity at 24 hours, which decreased at 48 hours. In conclusion, tracking 111In-labeled hMSCs combining SPECT and MRI is feasible and may be transferable to clinical research. The multimodal combination is essential to ensure appropriate interpretation of the images.