Examinando por Autor "Molina-Maza, Juan Manuel"
Mostrando 1 - 2 de 2
- Resultados por página
- Opciones de ordenación
Ítem Development of a Super-Resolution Scheme for Pediatric Magnetic Resonance Brain Imaging Through Convolutional Neural Networks(Frontiers, 2022-10-25) Molina-Maza, Juan Manuel; Galiana-Bordera, Adrian; Jimenez, Mar; Malpica, Norberto; Torrado-Carvajal, AngelPediatric medical imaging represents a real challenge for physicians, as children who are patients often move during the examination, and it causes the appearance of different artifacts in the images. Thus, it is not possible to obtain good quality images for this target population limiting the possibility of evaluation and diagnosis in certain pathological conditions. Specifically, magnetic resonance imaging (MRI) is a technique that requires long acquisition times and, therefore, demands the use of sedation or general anesthesia to avoid the movement of the patient, which is really damaging in this specific population. Because ALARA (as low as reasonably achievable) principles should be considered for all imaging studies, one of the most important reasons for establishing novel MRI imaging protocols is to avoid the harmful effects of anesthesia/sedation. In this context, ground-breaking concepts and novel technologies, such as artificial intelligence, can help to find a solution to these challenges while helping in the search for underlying disease mechanisms. The use of new MRI protocols and new image acquisition and/or pre-processing techniques can aid in the development of neuroimaging studies for children evaluation, and their translation to pediatric populations. In this paper, a novel super-resolution method based on a convolutional neural network (CNN) in two and three dimensions to automatically increase the resolution of pediatric brain MRI acquired in a reduced time scheme is proposed. Low resolution images have been generated from an original high resolution dataset and used as the input of the CNN, while several scaling factors have been assessed separately. Apart from a healthy dataset, we also tested our model with pathological pediatric MRI, and it successfully recovers the original image quality in both visual and quantitative ways, even for available examples of dysplasia lesions. We hope then to establish the basis for developing an innovative free-sedation protocol in pediatric anatomical MRI acquisition.Ítem Enhancing adaptive proton therapy through CBCT images: Synthetic head and neck CT generation based on 3D vision transformers(Wiley, 2024-04-03) Viar-Hernandez, David; Molina-Maza, Juan Manuel; Vera-Sánchez, Juan Antonio; Perez-Moreno, Juan Maria; Mazal, Alejandro; Rodriguez-Vila, Borja; Malpica, NorbertoBackground Proton therapy is a form of radiotherapy commonly used to treat various cancers. Due to its high conformality, minor variations in patient anatomy can lead to significant alterations in dose distribution, making adaptation crucial. While cone-beam computed tomography (CBCT) is a well-established technique for adaptive radiation therapy (ART), it cannot be directly used for adaptive proton therapy (APT) treatments because the stopping power ratio (SPR) cannot be estimated from CBCT images. Purpose To address this limitation, Deep Learning methods have been suggested for converting pseudo-CT (pCT) images from CBCT images. In spite of convolutional neural networks (CNNs) have shown consistent improvement in pCT literature, there is still a need for further enhancements to make them suitable for clinical applications. Methods The authors introduce the 3D vision transformer (ViT) block, studying its performance at various stages of the proposed architectures. Additionally, they conduct a retrospective analysis of a dataset that includes 259 image pairs from 59 patients who underwent treatment for head and neck cancer. The dataset is partitioned into 80% for training, 10% for validation, and 10% for testing purposes. Results The SPR maps obtained from the pCT using the proposed method present an absolute relative error of less than 5% from those computed from the planning CT, thus improving the results of CBCT. Conclusions We introduce an enhanced ViT3D architecture for pCT image generation from CBCT images, reducing SPR error within clinical margins for APT workflows. The new method minimizes bias compared to CT-based SPR estimation and dose calculation, signaling a promising direction for future research in this field. However, further research is needed to assess the robustness and generalizability across different medical imaging applications