Logotipo del repositorio
Comunidades
Todo DSpace
  • English
  • Español
Iniciar sesión
  1. Inicio
  2. Buscar por autor

Examinando por Autor "Murano, Santiago"

Seleccione resultados tecleando las primeras letras
Mostrando 1 - 4 de 4
  • Resultados por página
  • Opciones de ordenación
  • Cargando...
    Miniatura
    Ítem
    Conception of a System-on-Chip (SoC) Platform to Enable EMG-Guided Robotic Neurorehabilitation
    (MDPI, 2025-02-07) Nieto, Rubén; Fernández, Pedro R.; Murano, Santiago; Navarro, Víctor M.; del-Ama, Antonio J.; Borromeo, Susana
    Electromyography (EMG) signals are fundamental in neurorehabilitation as they provide a non-invasive means of capturing the electrical activity of muscles, enabling precise detection of motor intentions. This capability is essential for controlling assistive devices, such as therapeutic exoskeletons, that aim to restore mobility and improve motor function in patients with neuromuscular impairments. The integration of EMG into neurorehabilitation systems allows for adaptive and patient-specific interventions, addressing the variability in motor recovery needs. However, achieving the high fidelity, low latency, and robustness required for real-time control of these devices remains a significant challenge. This paper introduces a novel multi-channel electromyography (EMG) acquisition system implemented on a System-on-Chip (SoC) architecture for robotic neurorehabilitation. The system employs the Zynq-7000 SoC, which integrates an Advanced RISC Machine (ARM) processor, for high-level control and an FPGA for real-time signal processing. The architecture enables precise synchronization of up to eight EMG channels, leveraging high-speed analog-to-digital conversion and advanced filtering techniques implemented directly at the measurement site. By performing filtering and initial signal processing locally, prior to transmission to other subsystems, the system minimizes noise both through optimized processing and by reducing the distance to the muscle, thereby significantly enhancing the signal-to-noise ratio (SNR). A dedicated communication interface ensures low-latency data transfer to external controllers, crucial for adaptive control loops in exoskeletal applications. Experimental results validate the system’s capability to deliver high signal fidelity and low processing delays, outperforming commercial alternatives in terms of flexibility and scalability. This implementation provides a robust foundation for real-time bio-signal processing, advancing the integration of EMG-based control in neurorehabilitation devices.
  • Cargando...
    Miniatura
    Ítem
    Design of a complete simulator for underwater acoustic localization systems based on spread-spectrum signals
    (Elsevier, 2022-10) Murano, Santiago; Pérez, María del Carmen; Aparicio, Joaquín; Gualda, David; de Vicente, Jorge; Hernández, Álvaro
    Deploying prototype positioning systems in underwater environments is expensive and an especially challenging task, so a first common approach is to carry out simulated studies to evaluate the requirements and restrictions imposed by the environment. In this regard, it is helpful to have simulation models that allow the generation of a wide range of tests as a previous step to any experimental prototype implementation. For that purpose, this work focuses on the design of a simulation tool that facilitates research on underwater positioning systems by considering several parameters and features, such as the design of the signals emitted by the acoustic transducers (encoding techniques, modulation schemes, etc.), the frequency response and location of emitters and hydrophones, the bathymetry of the seabed, and the channel effects on the ultrasonic signal propagation, implemented in a model based on ray tracing for the propagation of acoustic signals. The simulation tool has been validated through a complete set of tests for different configurations and situations, analyzing the signals involved at different processing stages: baseband, modulated signals, received signals, and final estimated positions. This simulation tool is a valuable asset to research different positioning system configurations or to illustrate several concepts in a pedagogical context.
  • Cargando...
    Miniatura
    Ítem
    Evaluation of Zadoff-Chu, Kasami and Chirp based encoding schemes for Acoustic Local Positioning Systems
    (IEEE, 2019-12-13) Murano, Santiago; Pérez, María del Carmen; Gualda, David; Álvarez, Fernando
    The task of determining the physical coordinates of a target in indoor environments is still a key factor for many applications including people and robot navigation, user tracking, location-based advertising, augmented reality, gaming, emergency response or ambient assisted living environments. Among the different possibilities for indoor positioning, Acoustic Local Positioning Systems (ALPS) have the potential for centimeter level positioning accuracy with coverage distances up to tens of meters. In addition, acoustic transducers are small, low cost and reliable thanks to the room constrained propagation of these mechanical waves. Waveform design (coding and modulation) is usually incorporated into these systems to facilitate the detection of the transmitted signals at the receiver. The aperiodic correlation properties of the emitted signals have a large impact on how the ALPS cope with common impairment factors such as multipath propagation, multiple access interference, Doppler shifting, near-far effect or ambient noise. This work analyzes three of the most promising families of codes found in the literature for ALPS: Kasami codes, Zadoff-Chu and Orthogonal Chirp signals. The performance of these codes is evaluated in terms of time of arrival accuracy and characterized by means of model simulation under realistic conditions and by means of experimental tests in controlled environments. The results derived from this study can be of interest for other applications based on spreading sequences, such as underwater acoustic systems, ultrasonic imaging or even Code Division Multiple Access (CDMA) communications systems.
  • Cargando...
    Miniatura
    Ítem
    Simulation Tool and Online Demonstrator for CDMA-Based Ultrasonic Indoor Localization Systems
    (MDPI, 2022-01-28) Pérez-Rubio, María Carmen; Hernández, Álvaro; Gualda-Gómez, David; Murano, Santiago; Vicente-Ranera, Jorge; Ciudad-Fernández, Francisco; Villadangos-Carrizo, José M.; Nieto, Rubén
    This work presents the CODEUS platform, which includes a simulation tool together with an online experimental demonstrator to offer analysis and testing flexibility for researchers and developers in Ultrasonic Indoor Positioning Systems (UIPSs). The simulation platform allows most common encoding techniques and sequences to be tested in a configurable UIPS. It models the signal modulation and processing, the ultrasonic transducers’ response, the beacon distribution, the channel propagation effects, the synchronism, and the application of different positioning algorithms. CODEUS provides results and performance analysis for different metrics and at different stages of the signal processing. The UIPS simulation tool is specified by means of the MATLAB© App-Designer environment, which enables the definition of a user-friendly interface. It has also been linked to an online demonstrator that can be managed remotely by means of a website, thus avoiding any hardware requirement or equipment on behalf of researchers. This demonstrator allows the selected transmission schemes, modulation or encoding techniques to be validated in a real UIPS, therefore enabling a fast and easy way of carrying out experimental tests in a laboratory environment, while avoiding the time-consuming tasks related to electronic design and prototyping in the UIPS field. Both simulator and online demonstrator are freely available for researchers and students through the corresponding website.

© Universidad Rey Juan Carlos

  • Enviar Sugerencias