Examinando por Autor "Neves Monteiro, Sergio"
Mostrando 1 - 2 de 2
- Resultados por página
- Opciones de ordenación
Ítem Graphene-Incorporated Natural Fiber Polymer Composites: A First Overview(2020-07-18) Santos da Luz, Fernanda; da Costa Garcia Filho, Fabio; Gómez del-Río, María Teresa; Cassiano Nascimento, Lucio Fabio; Pinheiro, Wagner Anacleto; Neves Monteiro, SergioA novel class of graphene-based materials incorporated into natural lignocellulosic fiber (NLF) polymer composites is surging since 2011. The present overview is the first attempt to compile achievements regarding this novel class of composites both in terms of technical and scientific researches as well as development of innovative products. A brief description of the graphene nature and its recent isolation from graphite is initially presented together with the processing of its main derivatives. In particular, graphene-based materials, such as nanographene (NG), exfoliated graphene/graphite nanoplatelet (GNP), graphene oxide (GO) and reduced graphene oxide (rGO), as well as other carbon-based nanomaterials, such as carbon nanotube (CNT), are e ectively being incorporated into NLF composites. Their disclosed superior mechanical, thermal, electrical, and ballistic properties are discussed in specific publications. Interfacial shear strength of 575 MPa and tensile strength of 379 MPa were attained in 1 wt % GO-jute fiber and 0.75 wt % jute fiber, respectively, epoxy composites. Moreover, a Young’s modulus of 44.4 GPa was reported for 0.75 wt % GO-jute fiber composite. An important point of interest concerning this incorporation is the fact that the amphiphilic character of graphene allows a better way to enhance the interfacial adhesion between hydrophilic NLF and hydrophobic polymer matrix. As indicated in this overview, two basic incorporation strategies have so far been adopted. In the first, NG, GNP, GO, rGO and CNT are used as hybrid filler together with NLF to reinforce polymer composites. The second one starts with GO or rGO as a coating to functionalize molecular bonding with NLF, which is then added into a polymeric matrix. Both strategies are contributing to develop innovative products for energy storage, drug release, biosensor, functional electronic clothes, medical implants, and armor for ballistic protection. As such, this first overview intends to provide a critical assessment of a surging class of composite materials and unveil successful development associated with graphene incorporated NLF polymer composites.Ítem Mechanical Properties Optimization of Hybrid Aramid and Jute Fabrics-Reinforced Graphene Nanoplatelets in Functionalized HDPE Matrix Nanocomposites(2023-05-26) Oliveira Costa, Ulisses; da Costa García Filho, Fabio; Gómez del-Río, Teresa; Passos Rodriguez, Joao Gabriel; Tonini Simonassi, Noan; Neves Monteiro, Sergio; Cassiano Nascimento, Lucio FabioNatural lignocellulosic fibers (NLFs) have been used as a reinforcement for polymer matrix composites in the past couple of decades. Their biodegradability, renewability, and abundance make them appealing for sustainable materials. However, synthetic fibers surpass NLFs in mechanical and thermal properties. Combining these fibers as a hybrid reinforcement in polymeric materials shows promise for multifunctional materials and structures. Functionalizing these composites with graphene-based materials could lead to superior properties. This research optimized the tensile and impact resistance of a jute/aramid/HDPE hybrid nanocomposite by the addition of graphene nanoplatelets (GNP). The hybrid structure with 10 jute/10 aramid layers and 0.10 wt.% GNP exhibited a 2433% increase in mechanical toughness, a 591% increase in tensile strength, and a 462% reduction in ductility compared to neat jute/HDPE composites. A SEM analysis revealed the influence of GNP nano-functionalization on the failure mechanisms of these hybrid nanocomposites.