Examinando por Autor "Olariaga, Ibai"
Mostrando 1 - 3 de 3
- Resultados por página
- Opciones de ordenación
Ítem A new lineage of mazaediate fungi in the Eurotiomycetes: Cryptocaliciomycetidae subclass. nov., based on the new species Cryptocalicium blascoi and the revision of the ascoma evolution.(Springer, 2021) Prieto, Maria; Etayo, Javier; Olariaga, IbaiThe class Eurotiomycetes (Ascomycota, Pezizomycotina) comprises important fungi used for medical, agricultural, industrial and scientific purposes. Eurotiomycetes is a morphologically and ecologically diverse monophyletic group. Within the Eurotiomycetes, different ascoma morphologies are found including cleistothecia and perithecia but also apothecia or stromatic forms. Mazaediate representatives (with a distinct structure in which loose masses of ascospores accumulate to be passively disseminated) have evolved independently several times. Here we describe a new mazaediate species belonging to the Eurotiomycetes. The multigene phylogeny produced (7 gene regions: nuLSU, nuSSU, 5.8S nuITS, mtSSU, RPB1, RPB2 and MCM7) placed the new species in a lineage sister to Eurotiomycetidae. Based on the evolutionary relationships and morphology, a new subclass, a new order, family and genus are described to place the new species: Cryptocalicium blascoi. This calicioid species occurs on the inner side of loose bark strips of Cupressaceae (Cupressus, Juniperus). Morphologically, C. blascoi is characterized by having minute apothecioid stalked ascomata producing mazaedia, clavate bitunicate asci with hemiamyloid reaction, presence of hamathecium and an apothecial external surface with dark violet granules that becomes turquoise green in KOH. The ancestral state reconstruction analyses support a common ancestor with open ascomata for all deep nodes in Eurotiomycetes and the evolution of closed ascomata (cleistothecioid in Eurotiomycetidae and perithecioid in Chaetothyriomycetidae) from apothecioid ancestors. The appropriateness of the description of a new subclass for this fungus is also discussedÍtem Considerations and consequences of allowing DNA sequence data as types of fungal taxa(International Mycological Association, 2018-05-24) Zamora, Juan Carlos; Svensson, Måns; Kirschner, Roland; Olariaga, Ibai; Ryman, Svengunnar; Parra, Luis Alberto; Geml, József; Rosling, Anna; Millanes, Ana María; Prieto, Marìa; Ekman, StefanNomenclatural type definitions are one of the most important concepts in biological nomenclature. Being physical objects that can be re-studied by other researchers, types permanently link taxonomy (an artificial agreement to classify biological diversity) with nomenclature (an artificial agreement to name biological diversity). Two proposals to amend the International Code of Nomenclature for algae, fungi, and plants (ICN), allowing DNA sequences alone (of any region and extent) to serve as types of taxon names for voucherless fungi (mainly putative taxa from environmental DNA sequences), have been submitted to be voted on at the 11th International Mycological Congress (Puerto Rico, July 2018). We consider various genetic processes affecting the distribution of alleles among taxa and find that alleles may not consistently and uniquely represent the species within which they are contained. Should the proposals be accepted, the meaning of nomenclatural types would change in a fundamental way from physical objects as sources of data to the data themselves. Such changes are conducive to irreproducible science, the potential typification on artefactual data, and massive creation of names with low information content, ultimately causing nomenclatural instability and unnecessary work for future researchers that would stall future explorations of fungal diversity. We conclude that the acceptance of DNA sequences alone as types of names of taxa, under the terms used in the current proposals, is unnecessary and would not solve the problem of naming putative taxa known only from DNA sequences in a scientifically defensible way. As an alternative, we highlight the use of formulas for naming putative taxa (candidate taxa) that do not require any modification of the ICN.Ítem Phylogenetic origins and family classification of typhuloid fungi, with emphasis on Ceratellopsis, Macrotyphula and Typhula (Basidiomycota)(ScienceDirect, 2020-06) Olariaga, Ibai; Huhtinen, Seppo; Læssøe, Thomas; Petersen, Jens Henrik; Hansen, KarenTyphuloid fungi are a very poorly known group of tiny clavarioid homobasidiomycetes. The phylogenetic position and family classification of the genera targeted here, Ceratellopsis, Macrotyphula, Pterula sensu lato and Typhula, are controversial and based on unresolved phylogenies. Our six-gene phylogeny with an expanded taxon sampling shows that typhuloid fungi evolved at least twice in the Agaricales (Pleurotineae, Clavariineae) and once in the Hymenochaetales. Macro- typhula, Pterulicium and Typhula are nested within the Pleurotineae. The type of Typhula (1818) and Sclerotium (1790), T. phacorrhiza and S. complanatum (synonym T. phacorrhiza), are encompassed in the Macrotyphula clade that is distantly related to a monophyletic group formed by species usually assigned to Typhula. Thus, the correct name for Macrotyphula (1972) and Typhula is Sclerotium and all Typhula species but those in the T. phacorrhiza group need to be transferred to Pistillaria (1821). To avoid undesirable nomenclatural changes, we suggest to conserve Typhula with T. incarnata as type. Clavariaceae is supported as a separate, early diverging lineage within Agaricales, with Hygrophoraceae as a successive sister taxon to the rest of the Agaricales. Ceratellopsis s. auct. is polyphyletic because C. acuminata nests in Clavariaceae and C. sagittiformis in the Hymenochaetales. Ceratellopsis is found to be an earlier name for Pterulicium, because the type, C. queletii, represents Pterulicium gracile (synonym Pterula gracilis), deeply nested in the Pterulicium clade. To avoid re-combining a large number of names in Ceratellopsis we suggest to conserve it with C. acuminata as type. The new genus Bryopistillaria is created to include C. sagittiformis. The families Sarcomyxaceae and Phyllotopsidaceae, and the suborder Clavariineae, are described as new. Six new combinations are proposed and 15 names typified