Examinando por Autor "Pascau, Javier"
Mostrando 1 - 4 de 4
- Resultados por página
- Opciones de ordenación
Ítem Assessment of intraoperative 3D imaging alternatives for IOERT dose estimation(Elsevier, 2017-09) García-Vázquez, Verónica; Marinetto, Eugenio; Guerra, Pedro; Valdivieso-Casique, Manlio Fabio; Calvo, Felipe Ángel; Alvarado-Vásquez, Eduardo; Sole, Claudio Vicente; Vosburgh, Kirby Gannett; Desco, Manuel; Pascau, JavierIntraoperative electron radiation therapy (IOERT) involves irradiation of an unresected tumour or a post-resection tumour bed. The dose distribution is calculated from a preoperative computed tomography (CT) study acquired using a CT simulator. However, differences between the actual IOERT field and that calculated from the preoperative study arise as a result of patient position, surgical access, tumour resection and the IOERT set-up. Intraoperative CT imaging may then enable a more accurate estimation of dose distribution. In this study, we evaluated three kilovoltage (kV) CT scanners with the ability to acquire intraoperative images. Our findings indicate that current IOERT plans may be improved using data based on actual anatomical conditions during radiation. The systems studied were two portable systems (“O-arm”, a cone-beam CT [CBCT] system, and “BodyTom”, a multislice CT [MSCT] system) and one CBCT integrated in a conventional linear accelerator (LINAC) (“TrueBeam”). TrueBeam and BodyTom showed good results, as the gamma pass rates of their dose distributions compared to the gold standard (dose distributions calculated from images acquired with a CT simulator) were above 97% in most cases. The O-arm yielded a lower percentage of voxels fulfilling gamma criteria owing to its reduced field of view (which left it prone to truncation artefacts). Our results show that the images acquired using a portable CT or even a LINAC with on-board kV CBCT could be used to estimate the dose of IOERT and improve the possibility to evaluate and register the treatment administered to the patient.Ítem ConoSurf: Open-source 3D scanning system based on a conoscopic holography device for acquiring surgical surfaces(Wiley, 2017) Brudfors, Mikael; García-Vázquez, Verónica; Sesé-Lucio, Begoña; Marinetto, Eugenio; Desco, Manuel; Pascau, JavierBackground: A difficulty in computer-assisted interventions is acquiring the patient's anatomy intraoperatively. Standard modalities have several limitations: low image quality (ultrasound), radiation exposure (computed tomography) or high costs (magnetic resonance imaging). An alternative approach uses a tracked pointer; however, the pointer causes tissue deformation and requires sterilizing. Recent proposals, utilizing a tracked conoscopic holography device, have shown promising results without the previously mentioned drawbacks. Methods: We have developed an open-source software system that enables real-time surface scanning using a conoscopic holography device and a wide variety of tracking systems, integrated into pre-existing and well-supported software solutions. Results: The mean target registration error of point measurements was 1.46 mm. For a quick guidance scan, surface reconstruction improved the surface registration error compared with point-set registration. Conclusions: We have presented a system enabling real-time surface scanning using a tracked conoscopic holography device. Results show that it can be useful for acquiring the patient's anatomy during surgery.Ítem fMRat: an extension of SPM for a fully automatic analysis of rodent brain functional magnetic resonance series(Springer Nature, 2015-08-19) Chavarrías, Cristina; García-Vázquez, Verónica; Alemán-Gómez, Yasser; Montesinos, Paula; Pascau, Javier; Desco, ManuelThe purpose of this study was to develop a multi-platform automatic software tool for full processing of fMRI rodent studies. Existing tools require the usage of several different plug-ins, a significant user interaction and/or programming skills. Based on a user-friendly interface, the tool provides statistical parametric brain maps (t and Z) and percentage of signal change for user-provided regions of interest. The tool is coded in MATLAB (MathWorks®) and implemented as a plug-in for SPM (Statistical Parametric Mapping, the Wellcome Trust Centre for Neuroimaging). The automatic pipeline loads default parameters that are appropriate for preclinical studies and processes multiple subjects in batch mode (from images in either Nifti or raw Bruker format). In advanced mode, all processing steps can be selected or deselected and executed independently. Processing parameters and workflow were optimized for rat studies and assessed using 460 male-rat fMRI series on which we tested five smoothing kernel sizes and three different hemodynamic models. A smoothing kernel of FWHM = 1.2 mm (four times the voxel size) yielded the highest t values at the somatosensorial primary cortex, and a boxcar response function provided the lowest residual variance after fitting. fMRat offers the features of a thorough SPM-based analysis combined with the functionality of several SPM extensions in a single automatic pipeline with a user-friendly interface. The code and sample images can be downloaded from https://github.com/HGGM-LIM/fmrat.Ítem Surface scanning for 3D dose calculation in intraoperative electron radiation therapy(BMC, 2018-12-07) García-Vázquez, Verónica; Sesé-Lucio, Begoña; Calvo, Felipe A.; Vaquero, Juan J.; Desco, Manuel; Pascau, JavierBackground: Dose calculations in intraoperative electron radiation therapy (IOERT) rely on the conventional assumption of water-equivalent tissues at the applicator end, which defines a flat irradiation surface. However, the shape of the irradiation surface modifies the dose distribution. Our study explores, for the first time, the use of surface scanning methods for three-dimensional dose calculation of IOERT. Methods: Two different three-dimensional scanning technologies were evaluated in a simulated IOERT scenario: a tracked conoscopic holography sensor (ConoProbe) and a structured-light three-dimensional scanner (Artec). Dose distributions obtained from computed tomography studies of the surgical field (gold standard) were compared with those calculated under the conventional assumption or from pseudo-computed tomography studies based on surfaces. Results: In the simulated IOERT scenario, the conventional assumption led to an average gamma pass rate of 39.9% for dose values greater than 10% (two configurations, with and without blood in the surgical field). Results improved when considering surfaces in the dose calculation (88.5% for ConoProbe and 92.9% for Artec). Conclusions: More accurate three-dimensional dose distributions were obtained when considering surfaces in the dose calculation of the simulated surgical field. The structured-light three-dimensional scanner provided the best results in terms of dose distributions. The findings obtained in this specific experimental setup warrant further research on surface scanning in the IOERT context owing to the clinical interest of improving the documentation of the actual IOERT scenario.