Examinando por Autor "Pizarro, Daniel"
Mostrando 1 - 3 de 3
- Resultados por página
- Opciones de ordenación
Ítem Deep Shape-from-Template: Single-image Quasi-isometric Deformable Registration and Reconstruction(Elsevier, 2022) Fuentes-Jimenez, David; Pizarro, Daniel; Casillas-Pérez, David; Collins, Toby; Bartoli, AdrienShape-from-Template (SfT) solves 3D vision from a single image and a deformable 3D object model, called a template. Concretely, SfT computes registration (the correspondence between the template and the image) and reconstruction (the depth in camera frame). It constrains the object deformation to quasi-isometry. Real-time and automatic SfT represents an open problem for complex objects and imaging conditions. We present four contributions to address core unmet challenges to realise SfT with a Deep Neural Network (DNN). First, we propose a novel DNN called DeepSfT, which encodes the template in its weights and hence copes with highly complex templates. Second, we propose a semi-supervised training procedure to exploit real data. This is a practical solution to overcome the render gap that occurs when training only with simulated data. Third, we propose a geometry adaptation module to deal with different cameras at training and inference. Fourth, we combine statistical learning with physics-based reasoning. DeepSfT runs automatically and in real-time and we show with numerous experiments and an ablation study that it consistently achieves a lower 3D error than previous work. It outperforms in generalisation and achieves great performance in terms of reconstruction and registration error with widebaseline, occlusions, illumination changes, weak texture and blur.Ítem Detection of Anomalies in Daily Activities Using Data from Smart Meters(MDPI, 2024-01-14) Hernández, Álvaro; Nieto, Rubén; de Diego-Otón, Laura; Pérez-Rubio, María Carmen; Villadangos-Carrizo, José M.; Pizarro, Daniel; Ureña, JesúsThe massive deployment of smart meters in most Western countries in recent decades has allowed the creation and development of a significant variety of applications, mainly related to efficient energy management. The information provided about energy consumption has also been dedicated to the areas of social work and health. In this context, smart meters are considered single-point non-intrusive sensors that might be used to monitor the behaviour and activity patterns of people living in a household. This work describes the design of a short-term behavioural alarm generator based on the processing of energy consumption data coming from a commercial smart meter. The device captured data from a household for a period of six months, thus providing the consumption disaggregated per appliance at an interval of one hour. These data were used to train different intelligent systems, capable of estimating the predicted consumption for the next one-hour interval. Four different approaches have been considered and compared when designing the prediction system: a recurrent neural network, a convolutional neural network, a random forest, and a decision tree. By statistically analysing these predictions and the actual final energy consumption measurements, anomalies can be detected in the undertaking of three different daily activities: sleeping, breakfast, and lunch. The recurrent neural network achieves an F1-score of 0.8 in the detection of these anomalies for the household under analysis, outperforming other approaches. The proposal might be applied to the generation of a short-term alarm, which can be involved in future deployments and developments in the field of ambient assisted living.Ítem Monitoring Daily Activities in Households by Means of Energy Consumption Measurements from Smart Meters(MDPI, 2025-02-27) Hernández, Álvaro; Nieto, Rubén; de Diego-Otón, Laura; Villadangos-Carrizo, José M.; Pizarro, Daniel; Fuentes, David; Pérez-Rubio, María C.Non-Intrusive Load Monitoring (NILM) includes a set of methods orientated to disaggregating the power consumption of a household per appliance. It is commonly based on a single metering point, typically a smart meter at the entry of the electrical grid of the building, where signals of interest, such as voltage or current, can be measured and analyzed in order to disaggregate and identify which appliance is turned on/off at any time. Although this information is key for further applications linked to energy efficiency and management, it may also be applied to social and health contexts. Since the activation of the appliances in a household is related to certain daily activities carried out by the corresponding tenants, NILM techniques are also interesting in the design of remote monitoring systems that can enhance the development of novel feasible healthcare models. Therefore, these techniques may foster the independent living of elderly and/or cognitively impaired people in their own homes, while relatives and caregivers may have access to additional information about a person’s routines. In this context, this work describes an intelligent solution based on deep neural networks, which is able to identify the daily activities carried out in a household, starting from the disaggregated consumption per appliance provided by a commercial smart meter. With the daily activities identified, the usage patterns of the appliances and the corresponding behaviour can be monitored in the long term after a training period. In this way, every new day may be assessed statistically, thus providing a score about how similar this day is to the routines learned during the training interval. The proposal has been experimentally validated by means of two commercially available smart monitors installed in real houses where tenants followed their daily routines, as well as by using the well-known database UK-DALE.