Examinando por Autor "Plancha, Eva"
Mostrando 1 - 2 de 2
- Resultados por página
- Opciones de ordenación
Ítem Electrical Cardioversion Outcome Prognosis: A Multivariate Multiscale Entropy Characterization of Atrial Activity in Persistent Atrial Fibrillation(Elsevier, 2025-07-24) Cirugeda Roldan, Eva Maria; Plancha, Eva; Hidalgo, Victor Manuel; Calero, Sofía; Rieta, José Joaquín; Alcaraz, RaúlBackground: Atrial fibrillation (AF) remains a significant cause of stroke, heart failure, and cardiovascular morbidity worldwide. Despite advancements in AF management, electrical cardioversion (ECV) remains the most commonly used technique for sinus rhythm (SR) restoration although presenting a limited success rate in the mid-term along with a high number of side-effects which can lead to an increase in patients health deterioration and, consequently, in healthcare costs. Hence, predicting ECV outcome in the mid-term remains a challenging task. Here, a new framework based on multivariate multiscale entropy (MMSE) characterization of atrial activity is proposed to improve ECV outcome prediction in the mid-term. Methods: 58 patients with persistent AF scheduled for ECV were considered. A 12-Lead standard ECG segment of 1.5 min duration prior to the first electrical shock was analyzed. The atrial activity (AA) is estimated from the 12-lead surface ECG using a QT segment removal algorithm based on QRS complex estimation and pattern recognition techniques. AA is characterized by means of multivariate extensions of traditional indices such as the amplitude of the fibrillatory waves and dominant frequency along with multivariate extensions of complexity measures as multivariate Sample Entropy and finally Multivariate Multiscale Entropy (MMSE). These indices were estimated over 12-lead ECG records from 58 ECV derived patients who were classified based on SR maintenance after 30-day follow up (mid-term evaluation). ECV prognosis was evaluated using ROC curves and Youden’s Criteria for optimal threshold establishment. Performance was compared to that of unidimensional indices. Results: Patients who maintained SR post-ECV exhibited distinct complexity patterns compared to those who relapsed into AF. Specifically, MMSE provided higher discriminant accuracy than traditional unidimensional indices. When considering only the limb leads in the analysis, the best performance was achieved, over 83% accurate classification of SR restoration in the mid-term (Se = 0.74, Sp = 0.85, p ≤ 0.001). Additionally, the accumulated entropy and slope of the MMSE curves, offered robust predictors of ECV outcomes providing better balanced sensitivity and specificity ROC curves. Conclusions: This work highlights the importance of multivariate approaches in AF characterization and provides a comprehensive framework for improving ECV outcome prediction, providing an increase in almost a 30% of correct predictions in the mid-term. Future research should explore the integration of these methods into clinical practice to optimize treatment strategies for AF patients and reduced healthcare costs.Ítem Multidimensional Characterization of the Atrial Activity to Predict Electrical Cardioversion Outcome of Persistent Atrial Fibrillation(Computing in Cardiology, 2020-09-16) Cirugeda, Eva Maria; Calero, Sofía; Plancha, Eva; Enero, José; Rieta, Jose Joaquín; Alcaraz, RaúlEuropean Society of Cardiology guidelines recommend electrical cardioversion (ECV) as a rhythm control strategy in persistent atrial fibrillation (AF). Although ECV initially restores sinus rhythm (SR) in almost every patient, mid- and long-term AF recurrence rates are high, so that additional research is needed to anticipate ECV outcome and rationalize the management of AF patients. Although indices characterizing fibrillatory (f-) waves from surface lead V1, such as dominant frequency (DF), amplitude (FWA), and entropy, have reported good results, they discard the spatial information from the remaining leads. Hence, this work explores whether a multidimensional characterization approach of these parameters can improve ECV outcome prediction. The obtained results have shown that multidimensional FWA reported more balanced values of sensitivity and specificity, although the discriminant ability was similar in both cases. For DF, a similar outcome was also obtained. In contrast, multivariate entropy overcome discriminant ability of its univariate version by 5%, rightly anticipating result in more than 80% of ECV cases. Therefore, multidimensional entropy analysis seems to be able to quantify novel dynamics in the f-waves, which lead to a better ECV outcome prediction.