Examinando por Autor "Serrano, David Pedro"
Mostrando 1 - 4 de 4
- Resultados por página
- Opciones de ordenación
Ítem Evaluating fractional pyrolysis for bio-oil speciation into holocellulose and lignin derived compounds(Elsevier, 2021-03) Hernando, Hector; Gomez-Pozuelo, Gema; Botas, Juan Angel; Serrano, David PedroFractional pyrolysis of lignocellulosic biomass, by staged thermal treatment, has been assessed as an in-situ speciation method of the bio-oil components that could be highly beneficial for extracting valuable compounds or for their subsequent catalytic upgrading. Wheat straw and pine woodchips were used as representative biomasses. Based on the results of TG analyses in an inert atmosphere, 350 and 700 °C were selected, respectively, as operational temperatures for the fractional pyrolysis. Compared to single-step pyrolysis, fractional thermal treatment of both biomasses led to some reduction of the bio-oil yield but with improved properties due to their lower oxygen content. Sharp differences were observed in the bio-oil composition obtained at the two steps of fractional pyrolysis. GC-MS analyses revealed that most of the compounds detected in the bio-oil obtained at 350 °C were products formed by the decomposition of polysaccharides, such as carboxylic acids, furans, sugars, and light oxygenates. In contrast, the organic liquid phase obtained during the subsequent treatment at 700 °C was rich in aromatic oxygenated compounds, coming from the lignin conversion. The content of oligomeric and heavy species, not detected by GC-MS, was much higher in the bio-oils obtained in the high-temperature step of fractional pyrolysis, denoting that they are largely formed from lignin. Significant changes were also observed in the relative contribution of the deoxygenation pathways during the two steps of fractional pyrolysis. Thus, dehydration was the predominant deoxygenation route during the degradation of the holocellulose biopolymers at the low-temperature step, whereas the decomposition of the lignin-rich solid at the high-temperature treatment proceeded with a significant contribution of decarbonylation and decarboxylation. These results evidence the great potential of lignocellulose fractional pyrolysis to generate bio-oil streams with high speciation of the components, facilitating sharply their further processing and upgrading.Ítem Hydrogen production by catalytic methane decomposition over rice husk derived silica(Elsevier, 2021-12-15) Gomez-Pozuelo, Gema; Pizarro, Patricia; Botas, Juan Angel; Serrano, David PedroMethane decomposition (DeCH4) over solid catalysts is an interesting route for the production of hydrogen free of CO2 emissions. Moreover, it could lead to a negative carbon balance if biogas/biomethane is used as feedstock. However, it is limited by the huge amounts of carbon that are deposited over the catalyst causing its deactivation and hindering its regeneration, which makes necessary the development of low-cost and durable catalytic systems. This work reports the use of different silica materials fully produced from rice husk, i.e. without incorporating any external phase or component, as DeCH4 catalysts. The highest catalytic activity has been found for the silica samples showing large BET surface area and amorphous nature. These properties favor the generation of the actual DeCH4 active sites (-Si-C- species), shortening the induction time detected at the beginning of the reaction tests. The nano-silica materials produced from acid-washed rice husk exhibit a remarkable resistance against deactivation, affording an almost constant reaction rate at long times on stream. This fact is assigned to the presence of large mesopores that facilitate the growth of the carbons deposits towards the outer part of the catalyst particles. The results here reported show the great potential of rice husk-derived nano-silica to overcome several of the most relevant limitations that currently exist for the commercial deployment of hydrogen production by catalytic DeCH4, as a consequence of the low cost and durable activity of these sustainable materials.Ítem Selective hydrocarboxylation of fatty acids into long-chain hydrocarbons catalyzed by Pd/Al-SBA-15(Elsevier, 2019-01-29) Serrano, David Pedro; Escola, José María; Briones, Laura; Arroyo, MartaPd/Al-SBA-15 materials, with different Si/Al atomic ratios, have been investigated as catalysts in the hydrodecarboxylation (HDC) of fatty acids for the production of long-chain paraffinic hydrocarbons. The catalytic tests were performed in a stirred batch reactor under H2 atmosphere using stearic, oleic and palmitic acids as substrates. Characterization of the catalysts indicates that the Pd nanoparticles are well distributed on the support, being partially located within their ordered mesopores. Increasing the Al-SBA-15 acidity enhances the stearic acid conversion but provokes a reduction in the selectivity towards hydrodecarboxylation versus hydrodeoxygenation (HDO). Variation of the reaction temperature within 225 - 300 ºC enhanced the catalytic activity, while the HDC selectivity remained over 90%, being just reduced when working at 300 ºC due to the occurrence of cracking reactions. The H2 pressure also increased the stearic acid conversion, in particular when passing from 3 to 6 bar, confirming the positive role of the hydrogen atmosphere in the decarboxylation process. However, when operating at 25 bar of H2 pressure, the HDC selectivity decreases, as the HDO pathway is favored. Comparing the results obtained with stearic, oleic and palmitic acids shows that the Pd/Al-SBA-15 system is an excellent catalyst for this reaction, providing in all cases a significant catalytic activity and a very high HDC selectivity. These findings can be related to the features of the Al-SBA-15 support (high surface area, uniform mesopores and mild Lewis acidity), which provides a good Pd dispersion, a high substrate accessibility and limit the extension of cracking reactions.Ítem Shifting pathways in the phenol/2-propanol conversion over the tandem Raney Ni + ZSM-5 catalytic system(American Chemical Society, 2020-02-04) García-Minguillán, Alba María; Briones, Laura; Serrano, David Pedro; Botas, Juan Ángel; Escola, José MaríaThis work investigates the effects of both the zeolite accessibility and the reaction temperature on conversion of phenol assisted by 2-propanol over the tandem system Raney Ni + ZSM-5 zeolite. Two different zeolite samples, containing similar Si/Al ratios, were used: nanocrystalline ZSM-5 (n-ZSM-5) and hierarchical ZSM-5 (h-ZSM-5), operating at temperatures of 125, 150 and 175°C. When working with the Raney Ni + n-ZSM-5 system at low and intermediate temperatures the main products were mostly benzene and cyclohexene formed by phenol deoxygenation. In contrast, when increasing the temperature up to 175°C, a shift in the reaction pathways was observed, leading towards a significant share of valuable alkylphenols (mostly cresols and cyclohexylphenols) in the product distribution, generated by the occurrence of alkylation reactions catalyzed by the zeolite acid sites. This effect was enhanced in the case of the h-ZSM-5 sample, due to its improved accessibility and larger mesopore/external surface area.