Examinando por Autor "Toro, MA"
Mostrando 1 - 3 de 3
- Resultados por página
- Opciones de ordenación
Ítem Purging deleterious mutations in conservation programmes: combining optimal contributions with inbred matings(Springer Nature, 2013-06) de Cara, MAR; Villanueva, B; Toro, MA; Fernández, JConservation programmes aim at minimising the loss of genetic diversity, which allows populations to adapt to potential environmental changes. This can be achieved by calculating how many offspring every individual should contribute to the next generation to minimise global coancestry. However, an undesired consequence of this strategy is that it maintains deleterious mutations, compromising the viability of the population. In order to avoid this, optimal contributions could be combined with inbred matings, to expose and eliminate recessive deleterious mutations by natural selection in a process known as purging. Although some populations that have undergone purging experienced reduced inbreeding depression, this effect is not consistent across species. Whether purging by inbred matings is efficient in conservation programmes depends on the balance between the loss of diversity, the initial decrease in fitness and the reduction in mutational load. Here we perform computer simulations to determine whether managing a population by combining optimal contributions with inbred matings improves its long-term viability while keeping reasonable levels of diversity. We compare the management based on genealogical information with management based on molecular data to calculate coancestries. In the scenarios analysed, inbred matings never led to higher fitness and usually maintained lower diversity than random or minimum coancestry matings. Replacing genealogical with molecular coancestry can maintain a larger genetic diversity but can also lead to a lower fitness. Our results are strongly dependent on the mutational model assumed for the trait under selection, the population size during management and the reproductive rate.Ítem Using genome-wide information to minimise the loss of diversity in conservation programmes(Wiley, 2011-12) de Cara, MAR; Fernández, J; Toro, MA; Villanueva, BWe study here the effect of using genome-wide marker data versus genealogical data in population management for the maintenance of diversity in conservation schemes using optimal contributions. We reexamine the benefits of using molecular data for different population and genome sizes, and compare different management strategies according to the group of individuals where we take decisions (parents or offspring). We also study the consequences of using estimated genealogical coancestries calculated from molecular information. Using genome-wide marker data performed usually better than using genealogical data or estimated genealogical coancestry to maintain expected and observed heterozygosity. Furthermore, when we could take decisions acting on the offspring, a larger heterozygosity was maintained than when we based our decisions on the potential parents.Ítem Using genomic tools to maintain diversity and fitness in conservation programmes(Wiley, 2013-10-15) de Cara, MAR; Villanueva, B; Toro, MA; Fernández, JConservation programmes aim at maximizing the survival probability of populations, by minimizing the loss of genetic diversity, which allows populations to adapt to changes, and controlling inbreeding increases. The best known strategy to achieve these goals is optimizing the contributions of the parents to minimize global coancestry in their offspring. Results on neutral scenarios showed that management based on molecular coancestry could maintain more diversity than management based on genealogical coancestry when a large number of markers were available. However, if the population has deleterious mutations, managing using optimal contributions can lead to a decrease in fitness, especially using molecular coancestry, because both beneficial and harmful alleles are maintained, compromising the long-term viability of the population. We introduce here two strategies to avoid this problem: The first one uses molecular coancestry calculated removing markers with low minor allele frequencies, as they could be linked to selected loci. The second one uses a coancestry based on segments of identity by descent, which measures the proportion of genome segments shared by two individuals because of a common ancestor. We compare these strategies under two contrasting mutational models of fitness effects, one assuming many mutations of small effect and another with few mutations of large effect. Using markers at intermediate frequencies maintains a larger fitness than using all markers, but leads to maintaining less diversity. Using the segment-based coancestry provides a compromise solution between maintaining diversity and fitness, especially when the population has some inbreeding load.