Examinando por Autor "Torres, E."
Mostrando 1 - 3 de 3
- Resultados por página
- Opciones de ordenación
Ítem Differential patterns of within- and between-population genetically based trait variation in Lupinus angustifolius(2023-08) Poyatos, C.; Sacristán Bajo, S.; Tabarés, P.; Prieto Benítez, S.; Rubio Teso, M.L.; Torres, E.; Morente López, J.; Lara Romero, C.; Iriondo, J.M.; García Fernández, A.Background and aims: Within-population genetic and phenotypic variation play a key role in the development of adaptive responses to environmental change. Between-population variation is also an essential element in assessing the evolutionary potential of species in response to changes in environmental conditions. In this context, common garden experiments are a useful tool to separate the genetic and environmental components of phenotypic variation. We aimed to assess within- and between-population phenotypic variation of Lupinus angustifolius L. in terms of its evolutionary potential to adapt to ongoing climate change. Methods: We evaluated populations' phenotypic variation of foliar, phenological and reproductive traits with a common garden experiment. Patterns of functional trait variation were assessed with (1) mixed model analyses and coefficients of variation (CVs) with confidence intervals, (2) principal component analyses (PCAs) and (3) correlations between pairs of traits. Analyses were performed at the population level (four populations) and at the latitude level (grouping pairs of populations located in two latitudinal ranges). Key results: Phenotypic variation had a significant genetic component associated with a latitudinal pattern. (1) Mixed models found lower specific leaf area, advanced flowering phenology and lower seed production of heavier seeds in southern populations, whereas CV analyses showed lower within-latitude variation especially in phenological and reproductive traits in southern populations. (2) PCAs showed a clearer differentiation of phenotypic variation between latitudes than between populations. (3) Correlation analyses showed a greater number of significant correlations between traits in southern populations (25 vs. 13). Conclusions: Between-population phenotypic variation was determined by contrasting temperature and drought at different latitude and elevation. Southern populations had differential trait values compatible with adaptations to high temperatures and drought. Moreover, they had lower within-population variation and a greater number of trait correlations probably as a result of these limiting conditions, making them more vulnerable to climate change.Ítem Facilitated adaptation as a conservation tool in the present climate change context: a methodological guide(2023-03-10) Torres, E.; García Fernández, A.; Iñigo, D.; Lara Romero, C.; Morente López, J.; Prieto Benitez, S.; Rubio Teso, M.L.; Iriondo, J.M.Climate change poses a novel threat to biodiversity that urgently requires the development of adequate conservation strategies. Living organisms respond to environmental change by migrating to locations where their ecological niche is preserved or by adapting to the new environment. While the first response has been used to develop, discuss and implement the strategy of assisted migration, facilitated adaptation is only beginning to be considered as a potential approach. Here, we present a review of the conceptual framework for facilitated adaptation, integrating advances and methodologies from different disciplines. Briefly, facilitated adaptation involves a population reinforcement that introduces beneficial alleles to enable the evolutionary adaptation of a focal population to pressing environmental conditions. To this purpose, we propose two methodological approaches. The first one (called pre-existing adaptation approach) is based on using pre-adapted genotypes existing in the focal population, in other populations, or even in closely related species. The second approach (called de novo adaptation approach) aims to generate new pre-adapted genotypes from the diversity present in the species through artificial selection. For each approach, we present a stage-by-stage procedure, with some techniques that can be used for its implementation. The associated risks and difficulties of each approach are also discussed.Ítem Population origin determines the adaptive potential for the advancement of flowering onset in Lupinus angustifolius L. (Fabaceae)(2023-01) Sacristán Bajo, S.; García Fernández, A.; Lara Romero, C.; Prieto Benitez, S.; Tabarés, P.; Morente López, J.; Rubio Teso, M.L.; Alameda Martín, A.; Torres, E.; Iriondo, J.M.In the present framework of global warming, it is unclear whether evolutionary adaptation can happen quick enough to preserve the persistence of many species. Specifically, we lack knowledge about the adaptive potential of the different populations in relation to the various constraints that may hamper particular adaptations. There is evidence indicating that early flowering often provides an adaptive advantage to plants in temperate zones in response to global warming. Thus, the objective of this study was to assess the adaptive potential for advancing flowering onset in Lupinus angustifolius L. (Fabaceae). Seeds from four populations from two contrasting latitudes in Spain were collected and sown in a common garden environment. Selecting the 25% of the individuals that flowered earlier in the first generation, over three generations, three different early flowering selection lines were established, involving both self-crosses and outcrosses. All artificial selection lines advanced their flowering significantly with respect to the control line in the northernmost populations, but not in the southern ones. Selection lines obtained from outcrossing had a greater advancement in flowering than those from self-crossing. No differences were found in the number or weight of the seeds produced between control and artificial selection lines, probably because plants in the common garden were drip irrigated. These results suggest that northern populations may have a greater adaptive potential and that southern populations may be more vulnerable in the context of climate warming. However, earlier flowering was also associated with changes in other traits (height, biomass, shoot growth, specific leaflet area, and leaflet dry matter content), and the effects of these changes varied greatly depending on the latitude of the population and selection line. Assessments of the ability of populations to cope with climate change through this and other approaches are essential to manage species and populations in a more efficient way.