Examinando por Autor "Wong, Christian"
Mostrando 1 - 2 de 2
- Resultados por página
- Opciones de ordenación
Ítem Non-invasive procedure for acquisition of mechanical properties of the torso(-, 2022) Koutras, Christos; Shayestehpour, Hamed; Perez, Jesus; Wong, Christian; Arnesen, Anna; Rasmussen, John; Otaduy, Miguel A.Computational methods promise benefits for the design of braces to manage adolescent idiopathic scoliosis. However, computational methods for the design of scoliosis braces suffer an important challenge: they require a personalized model of the patient’s torso biomechanics. The biggest difficulty in building a personalized model of the torso is defining its mechanical parametrization. In this work, we present a non-invasive procedure to obtain simultaneously force and deformation that characterize the mechanical response of the torso. We have tested the method on ten scoliotic patients, and we demonstrate its sensitivity by quantifying the range of forces and Cobb angles during the procedure.Ítem Simulation-Based Morphing of Personalized Models of the Torso for Scoliosis Brace Design – Preliminary Results(orthopaedic research society, 2022) Koutras, Christos; Shayestehpour, Hamed; Rodriguez, Jesus P.; Rasmussen, John; Wong, Christian; Otaduy, Miguel A.Computational and personalized design of braces for patients suffering from adolescent idiopathic scoliosis is a subject that has not been extensively studied and faces several unknowns. One of the most challenging tasks is the development of patient-specific biomechanical models of the torso. The first step required in order to build a personalized model is the acquisition of the patient’s specific geometry, i.e., the bones and joints of the skeleton. To this end, this study morphs a template torso model into patient-specific data in the following way: We start by acquiring x-rays, and we annotate personalized landmarks. Then, we use as template a biomechanical torso model consisted of a multibody dynamic system coupled with FEM and we proceed to the morphing in two steps. First, an initial tuning by adjusting the global scale of the model and finally a finer one, taking into account local deformations.