Examinando por Autor "de Miguel Bohoyo, Pablo"
Mostrando 1 - 2 de 2
- Resultados por página
- Opciones de ordenación
Ítem Data-Driven Visual Characterization of Patient Health-Status Using Electronic Health Records and Self-Organizing Maps(IEEE, 2020-07-27) Chushig Muzo, David; Soguero Ruiz, Cristina; Engelbrecht, Andries; de Miguel Bohoyo, Pablo; Mora Jiménez, InmaculadaHypertension and diabetes have become a global health and economic issue, being among the major chronic conditions worldwide, particularly in developed countries. To face this global problem, a better knowledge about these diseases becomes crucial to characterize chronic patients. Our aim is two-fold: (1) to provide an efficient visual tool for identifying clinical patterns in high-dimensional data; and (2) to characterize the patient health-status through a data-driven approach using electronic health records of healthy, hypertensive and diabetic populations. We propose a two-stage methodology that uses diagnosis and drug codes of healthy and chronic patients associated to the University Hospital of Fuenlabrada in Spain. The first stage applies the Self-Organizing Map on the aforementioned data to get a set of prototype patients which are projected onto a grid of nodes. Each node has associated a prototype patient that captures relationships among clinical characteristics. In the second stage, clustering methods are applied on the prototype patients to find groups of patients with a similar health-status. Clusters with distinctive patterns linked to chronic conditions were found, being the most remarkable highlights: a cluster of pregnant women emerged among the hypertensive population, and two clusters of diabetic individuals with significant differences in drug-therapy (insulin and non-insulin dependant). The proposed methodology showed to be effective to explore relationships within clinical data and to find patterns related to diabetes and hypertension in a visual way. Our methodology raises as a suitable alternative for building appropriate clinical groups, becoming a promising approach to be applied to any population due to its data-driven philosophy. A thorough analysis of these groups could spawn new and fruitful findings.Ítem Learning and visualizing chronic latent representations using electronic health records(Springer, 2022-09-05) Chushig-Muzo, David; Soguero Ruiz, Cristina; de Miguel Bohoyo, Pablo; Mora Jiménez, InmaculadaNowadays, patients with chronic diseases such as diabetes and hypertension have reached alarming numbers worldwide. These diseases increase the risk of developing acute complications and involve a substantial economic burden and demand for health resources. The widespread adoption of Electronic Health Records (EHRs) is opening great opportunities for supporting decision-making. Nevertheless, data extracted from EHRs are complex (heterogeneous, high-dimensional and usually noisy), hampering the knowledge extraction with conventional approaches. We propose the use of the Denoising Autoencoder (DAE), a Machine Learning (ML) technique allowing to transform high-dimensional data into latent representations (LRs), thus addressing the main challenges with clinical data. We explore in this work how the combination of LRs with a visualization method can be used to map the patient data in a two-dimensional space, gaining knowledge about the distribution of patients with different chronic conditions. Furthermore, this representation can be also used to characterize the patient’s health status evolution, which is of paramount importance in the clinical setting. To obtain clinical LRs, we considered real-world data extracted from EHRs linked to the University Hospital of Fuenlabrada in Spain. Experimental results showed the great potential of DAEs to identify patients with clinical patterns linked to hypertension, diabetes and multimorbidity. The procedure allowed us to find patients with the same main chronic disease but different clinical characteristics. Thus, we identified two kinds of diabetic patients with differences in their drug therapy (insulin and non-insulin dependant), and also a group of women affected by hypertension and gestational diabetes. We also present a proof of concept for mapping the health status evolution of synthetic patients when considering the most significant diagnoses and drugs associated with chronic patients. Our results highlighted the value of ML techniques to extract clinical knowledge, supporting the identification of patients with certain chronic conditions. Furthermore, the patient’s health status progression on the two-dimensional space might be used as a tool for clinicians aiming to characterize health conditions and identify their more relevant clinical codes.