DETECCIÓN AUTOMÁTICA DE PROFESIONES EN DOCUMENTOS CLÍNICOS.
Abstract
Este Trabajo de Fin de Grado (TFG) aborda un trabajo de investigación en el campo de la Inteligencia Artificial (IA) y el Procesamiento del Lenguaje Natural (PLN). El proyecto se desarrolla en el marco del reto MEDDOPROF de IberLEF 2021, un reto que tiene como objetivo mejorar la detección del estatus laboral y las profesiones de los pacientes en textos médicos a través de aprendizaje profundo. El desempleo, trabajar ilegalmente o en condiciones laborales temporales y precarias son elementos que pueden afectar enormemente a la vida de las personas pero que se han estado ignorando. Estos factores sociodemográficos pueden ayudar a los investigadores a caracterizar mejor múltiples aspectos de la salud relacionados con ocupaciones específicas. El objetivo principal de este TFG es desarrollar un sistema propio basado en transformers que permita abordar el reto planteado en MEDDOPROF, pero utilizando como base uno de los sistemas propuestos por los participantes del reto. Para lograr este objetivo se ha llevado a cabo un análisis exhaustivo de estas propuestas con el fin de comprender e identificar las técnicas y estrategias comunes utilizadas en este campo y que hayan demostrado ser exitosas. Una vez seleccionado el sistema adecuado como base para el proyecto, se han realizado pruebas y experimentos con el fin de buscar mejoras. Los resultados obtenidos durante la evaluación del sistema han permitido realizar un análisis comparativo con los resultados de los participantes, permitiendo señalar áreas potenciales de mejora y demostrando la eficacia de los enfoques y métodos empleados.
Description
Trabajo Fin de Grado leído en la Universidad Rey Juan Carlos en el curso académico 2022/2023. Directores/as: María Del Soto Montalvo Herranz
Collections
- Trabajos Fin de Grado [8120]
Los ítems de digital-BURJC están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario