Show simple item record

Solving Clustering Problems Using Bi-Objective Evolutionary Optimisation and Knee Finding Algorithms

dc.contributor.authorRecio, Gustavo
dc.contributor.authorDeb, Kalyanmoy
dc.date.accessioned2024-02-09T09:57:26Z
dc.date.available2024-02-09T09:57:26Z
dc.date.issued2013-06
dc.identifier.citationG. Recio and K. Deb, "Solving clustering problems using bi-objective evolutionary optimisation and knee finding algorithms," 2013 IEEE Congress on Evolutionary Computation, Cancun, Mexico, 2013, pp. 2848-2855, doi: 10.1109/CEC.2013.6557915.es
dc.identifier.issn1089-778X
dc.identifier.urihttps://hdl.handle.net/10115/30207
dc.description.abstractThis paper proposes the use of knee finding methods to solve cluster analysis problems from a multi-objective approach. The above proposal arises as a result of a bi-objective study of clustering problems where knee regions on the obtained Pareto-optimal fronts were observed. With increased noise in the data, these knee regions tend to get smoother but still comprise the preferred solution. Thus, being the knees what decision makers are interested in when analysing clustering problems, it makes sense to boost the search towards those regions by applying knee finding techniques.es
dc.language.isoenges
dc.subjectClustering algorithmses
dc.subjectMultiobjective optimizationes
dc.subjectEvolutionary computationes
dc.titleSolving Clustering Problems Using Bi-Objective Evolutionary Optimisation and Knee Finding Algorithmses
dc.typeinfo:eu-repo/semantics/conferenceObjectes
dc.identifier.doi10.1109/CEC.2013.6557915es
dc.rights.accessRightsinfo:eu-repo/semantics/restrictedAccesses


Files in this item

This item appears in the following Collection(s)

Show simple item record

Los ítems de digital-BURJC están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario