DASHBOARD FOR BUSINESS INTELLIGENCE FOR RADIOLOGY ANALYTICS

dc.contributor.authorOlmedilla González De Mendoza, María
dc.date.accessioned2024-07-27T10:00:05Z
dc.date.available2024-07-27T10:00:05Z
dc.date.issued2024-07-26
dc.descriptionTrabajo Fin de Grado leído en la Universidad Rey Juan Carlos en el curso académico 2023/2024. Directores/as: David Roldán Álvarez
dc.description.abstractThis project aims to optimize decision-making for pathologists by organizing their workflow and controlling analysis tools using data collected in a database. Implemented on a digital pathology platform, it leverages business intelligence (BI) and data analysis to develop an analytical dashboard that offers data visualizations and dynamic reports, monitoring user activity and case volumes. Key technologies used include Vue.js and Chart.js for the front-end, FastAPI and Pydantic for the back-end, Docker for containerization, and PostgreSQL as the relational database. The project is part of the NucleIQ digital pathology platform, which integrates whole slide images and provides case management and AI detection tools. This integration aims to enhance operational efficiency and decision-making in Anatomical Pathology, potentially revolutionizing diagnostic accuracy and speed.
dc.identifier.urihttps://hdl.handle.net/10115/38949
dc.language.isoeng
dc.publisherUniversidad Rey Juan Carlos
dc.rights
dc.rights.accessRightsinfo:eu-repo/semantics/embargoedAccess
dc.rights.uri
dc.subjectpathology
dc.subjectvisualization dashboard
dc.subjectdata analysis
dc.subjectdecision-making
dc.subjectBusiness Intelligence
dc.subjectreports
dc.subjectactivity monitoring
dc.subjectcase-volume management
dc.subjectNucleIQ digital pathology platform
dc.subjectefficiency
dc.subjectWhole-slide images
dc.subjectresource-allocation
dc.subjectclinical decision support
dc.subjectreal-time visualizations
dc.subjectdatabase
dc.titleDASHBOARD FOR BUSINESS INTELLIGENCE FOR RADIOLOGY ANALYTICS
dc.typeinfo:eu-repo/semantics/studentThesis

Archivos

Bloque original

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
2023-24-EIF-JL-2291-2291045-m.olmedilla.2020-MEMORIA.pdf
Tamaño:
9.28 MB
Formato:
Adobe Portable Document Format
Descripción:
Memoria del TFG