Capítulos de Libros
Examinar
Examinando Capítulos de Libros por Autor "Aceña, Víctor"
Mostrando 1 - 5 de 5
- Resultados por página
- Opciones de ordenación
Ítem A complexity measure for binary classification problems based on lost points(Springer International Publishing, 2021) Lancho, Carmen; Martín de Diego, Isaac; Cuesta, Marina; Aceña, Víctor; M. Moguerza, JavierComplexity measures are focused on exploring and capturing the complexity of a data set. In this paper, the Lost points (LP) complexity measure is proposed. It is obtained by applying k-means in a recursive and hierarchical way and it provides both the data set and the instance perspective. On the instance level, the LP measure gives a probability value for each point informing about the dominance of its class in its neighborhood. On the data set level, it estimates the proportion of lost points, referring to those points that are expected to be misclassified since they lie in areas where its class is not dominant. The proposed measure shows easily interpretable results competitive with measures from state-of-art. In addition, it provides probabilistic information useful to highlight the boundary decision on classification problems.Ítem From classification to visualization: a two way trip(Springer International Publishing, 2021) Cuesta, Marina; Martín de Diego, Isaac; Lancho, Carmen; Aceña, Víctor; M. Moguerza, JavierHigh Dimensional Data (HDD) is one of the biggest challenges in Data Science arising from Big Data. The application of dimensionality reduction techniques over HDD allows visualization and, thus, a better problem understanding. In addition, these techniques also can enhance the performance of Machine Learning (ML) algorithms while increasing the explanatory power. This paper presents an automatic method capable of obtaining an adequate representation of the data, given a previously trained ML model. Likewise, an automatic method is introduced to bring a Support Vector Machine (SVM) model based on an adequate representation of the data. Both methods provide an Explanaible Machine Learning procedure. The proposal is tested on several data sets providing promising results. It significantly eases the visualization and understanding task to the data scientist when a ML model has already been trained, as well as the ML selection parameters when a reduced representation of data has been achieved.Ítem Padel two-dimensional tracking extraction from monocular video recordings(Springer, 2024-11-14) Novillo, Álvaro; Aceña, Víctor; Lancho, Carmen; Cuesta, Marina; Martín de Diego, IsaacThis study introduces a novel framework for the automatic two-dimensional tracking of padel games using monocular recordings. By integrating advanced Computer Vision and Deep Learning techniques, our algorithm detects and tracks players, the court, and the ball. Through homography, we accurately project detected player positions onto a twodimensional court, enabling comprehensive tracking throughout the game. We tested the proposed algorithm using amateur video recordings of padel games found in literature. This approach remains user-friendly, cost-effective, and adaptable to various camera angles and lighting conditions. This makes it accessible to both amateur and professional players and coaches, providing a valuable tool for performance analysis. Additionally, the proposed framework holds potential for adaptation to other sports with minimal modifications, further broadening its applicability.Ítem Relevance Metric for Counterfactuals Selection in Decision Trees(Springer International Publishing, 2019) R. Fernández, Rubén; Martín de Diego, Isaac; Aceña, Víctor; M. Moguerza, Javier; Fernández-Isabel, AlbertoEl Aprendizaje Automático Explicable es un campo emergente en el dominio del Aprendizaje Automático. Aborda la explicabilidad de los modelos de Aprendizaje Automático y la lógica inherente detrás de las predicciones del modelo. En el caso particular de los métodos de explicación basados en ejemplos, se centran en utilizar instancias particulares, previamente definidas o creadas, para explicar el comportamiento de los modelos o predicciones. La explicación basada en contrafactuales es uno de estos métodos. Un contrafactual es una instancia hipotética similar a un ejemplo cuya explicación es de interés, pero con una clase predicha diferente. Este artículo presenta una métrica de relevancia para la selección de contrafactuales llamada sGower, diseñada para inducir esparsidad en los modelos de Árboles de Decisión. Funciona con características categóricas y continuas, considerando el número de cambios en las características y la distancia entre el contrafactual y el ejemplo. La métrica propuesta se evalúa en comparación con métricas de relevancia anteriores en varios conjuntos de datos categóricos y continuos, obteniendo en promedio mejores resultados que los enfoques anteriores.Ítem Weighted Nearest Centroid Neighbourhood(Springer, 2019) Aceña, Víctor; M. Moguerza, Javier; Martín de Diego, Isaac; R. Fernández, RubénSe presenta un novedoso clasificador binario basado en vecinos más cercanos al centroide. El método propuesto utiliza la bien conocida idea detrás del algoritmo clásico de k-Vecinos más Cercanos (k-NN): un punto es similar a otros que están cerca de él. La nueva propuesta se basa en una forma alternativa de calcular vecindarios que se adapta mejor a la distribución de los datos, considerando que un vecino más distante debe tener menos influencia que uno más cercano. La importancia relativa de cualquier vecino en un vecindario se estima utilizando la función SoftMax sobre la distancia implícita. Se realizan experimentos con conjuntos de datos simulados y reales. El método propuesto supera a las alternativas, proporcionando una nueva línea de investigación prometedora.