Examinando por Autor "Megias Areas, Guillermo"
Mostrando 1 - 2 de 2
- Resultados por página
- Opciones de ordenación
Ítem MEJORA DE LA EFICIENCIA EN ALGORITMOS DE BÚSQUEDA POR SIMILARIDAD MEDIANTE TÉCNICAS DE REDUCCIÓN DE DIMENSIONALIDAD(Universidad Rey Juan Carlos, 2024-07-23) Megias Areas, GuillermoLOS ALGORITMOS DE BúSQUEDA POR SIMILARIDAD SON APLICADOS DE FORMA MUY HABITUAL EN SISTEMAS DE INDEXACIóN DE GRANDES VOLúMENES DE DATOS HETEROGéNEOS COMO BASES DE DATOS MULTIMEDIA, DATOS GEOPOSICIONADOS O GESTORES DOCUMENTALES. EN ESTE CONTEXTO, LA NATURALEZA INTRíNSECA DE LOS DATOS SUPONE UN GRAN RETO DEBIDO A SU ALTA DIMENSIONALIDAD Y DISPERSIóN, LO QUE DIFICULTA SU TRATAMIENTO. ESTE TRABAJO INVESTIGARá CóMO EL ESCALADO Y PREPROCESADO DE DATOS PUEDE INFLUIR EN EL RENDIMIENTO DE ALGORITMOS DE APRENDIZAJE AUTOMáTICO APLICADOS A LA BúSQUEDA POR SIMILARIDAD EN CONJUNTOS DE DATOS DE ALTA DIMENSIONALIDAD Y DISPERSIóN. MEDIANTE UNA METODOLOGíA ESTRUCTURADA, SE ANALIZAN LOS EFECTOS DE ESTAS TéCNICAS ORIENTADAS A LA REDUCCIóN DE DIMENSIONALIDAD SOBRE LOS RESULTADOS EXPERIMENTALES, UTILIZANDO UNA PLATAFORMA ESTáNDAR PARA COMPARACIóN DE ALGORITMOS DE BúSQUEDA POR SIMILARIDAD.Ítem PREDICCIÓN DE RETRASOS EN TRANSPORTE AÉREO: INTEGRANDO REDES NEURONALES SOBRE GRAFOS CON ALGORITMOS CLÁSICOS DE APRENDIZAJE(Universidad Rey Juan Carlos, 2024-07-23) Megias Areas, GuillermoESTE TFG PROPONE UNA APROXIMACIóN EN DOS FASES PARA LA PREDICCIóN DE RETRASOS A NIVEL DE VUELOS, BASADA EN LA IMPLEMENTACIóN DE UN ENFOQUE HíBRIDO QUE COMBINA REDES NEURONALES Y ALGORITMOS DE APRENDIZAJE AUTOMáTICO. EN LA PRIMERA FASE, SE EMPLEAN REDES NEURONALES SOBRE GRAFOS PARA PREDECIR LOS RETRASOS EN LOS AEROPUERTOS. EN LA SEGUNDA FASE, BASáNDOSE EN ESTAS PREDICCIONES, SE UTILIZAN ALGORITMOS DE APRENDIZAJE AUTOMáTICO PARA REALIZAR PREDICCIONES ESPECíFICAS A NIVEL DE VUELO. LA APROXIMACIóN PROPUESTA EN ESTE TFG BUSCA MEJORAR LA GESTIóN DE LAS AEROLíNEAS, REDUCIENDO ASí LOS IMPACTOS NEGATIVOS SOCIOECONóMICOS Y MEDIOAMBIENTALES DE LA INDUSTRIA DEL TRANSPORTE AéREO.