Examinando por Autor "Obelleiro, Fernando"
Mostrando 1 - 4 de 4
- Resultados por página
- Opciones de ordenación
Ítem A Discontinuous Galerkin Combined Field Integral Equation Formulation for Electromagnetic Modeling of Piecewise Homogeneous Objects of Arbitrary Shape(Institute of Electrical and Electronics Engineers, 2021-07-26) Martin, Victor F.; Landesa, Luis; Obelleiro, Fernando; Taboada, Jose M.We present a novel discontinuous Galerkin surface integral equation approach, based on the electric and magnetic current combined field integral equations (JMCFIE), for the electromagnetic analysis of arbitrarily shaped piecewise homogeneous objects. In the proposed scheme, nonoverlapping boundary surfaces and interfaces between materials can be handled independently, without any continuity requirement through multimaterial junctions and tear lines between surfaces in contact. The use of nonconformal meshes provides improved flexibility for CAD prototyping and tessellation. The proposed formulation can readily address nonconformal multi-material junctions, where three or more material regions meet. The continuity of the electric surface current across the junction contours is enforced by the combination of the boundary conditions implicit in the JMCFIE formulation and the weakly imposed interior penalty between the contacting surfaces within each region. This completely avoids the cumbersome junction problem, which no longer requires any special treatment. Numerical experiments are included to validate the accuracy and demonstrate the great versatility of the proposed JMCFIE-DG formulation for the management and solution of complex composite objects with junctions.Ítem Accurate EMC Engineering on Realistic Platforms using an Integral Equation Domain Decomposition Approach(Institute of Electrical and Electronics Engineers, 2019-11-06) Solis, Diego M.; Martin, Victor F.; Araujo, Marta G.; Larios, David; Obelleiro, Fernando; Taboada, Jose M.This article investigates the efficiency, accuracy and versatility of a surface integral equation (SIE) multisolver scheme to address very complex and large-scale radiation problems including multiple scale features, in the context of realistic electromagnetic compatibility (EMC)/electromagnetic interference (EMI) studies. The tear-and-interconnect domain decomposition (DD) method is applied to properly decompose the problem into multiple subdomains attending to their material, geometrical, and scale properties, while different materials and arbitrarily shaped connections between them can be combined by using the so-called multiregion vector basis functions. The SIE-DD approach has been widely reported in the literature, mainly applied to scattering problems or small radiation problems. Complementarily, in this article, the focus is placed on realistic radiation problems, involving tens of antennas and sensors and including multiscale ingredients and multiple materials. Such kind of problems are very demanding in terms of both convergence and computational resources. Throughout two realistic case studies, the proposed SIE-DD approach is shown to be a powerful electromagnetic modeling tool to provide the accurate and fast solution which is indispensable to rigorously accomplish real-life EMC/EMI studies.Ítem Influence of Geometrical Parameters on the Optical Activity of Chiral Gold Nanorods(Wiley, 2023-03-08) Obelleiro-Liz, Manuel; Martin, Victor F.; Solis, Diego M.; Taboada, Jose M.; Obelleiro, Fernando; Liz-Marzán, Luis M.Chiral metal nanoparticles (NPs) offer a powerful means of inducing and harnessing optical activity. However, due to the incomplete knowledge of the underlying growth mechanisms, there is still limited control over the achievable morphological detail and, consequently, over the resulting optical activity. Therefore, theoretical modeling is needed to guide experimental development toward optimizing the plasmonic chiroptical response. Toward filling this gap, herein an extensive parametric analysis is presented, via computer-aided-design (CAD) models and full-wave electrodynamic simulations, which aims at systematically analyzing the influence of structural changes on the plasmonic circular dichroism (CD) spectra of rod-shaped gold NPs comprising helical indentations on achiral nanorod cores. From this analysis, interesting patterns in the plasmon-mediated resonant behavior are identified and cause–effect relationships are drawn that may serve as a go-to recipe for the understanding and fabrication of these NPs and their applications, such as spectroscopic (bio)detection including CD spectral shifts and surface-enhanced Raman optical activity.Ítem Universal Fabrication of Highly Efficient Plasmonic Thin-Films for Label-Free SERS Detection(Wiley, 2021-07-21) Gullace, Sara; Montes-Garcia, Veronica; Martin, Victor; Larios, David; Girelli, Consolaro; Obelleiro, Fernando; Calogero, Giuseppe; Casalini, Stefano; Samori, PaoloThe development of novel, highly efficient, reliable, and robust surface enhanced Raman scattering (SERS) substrates containing a large number of hot spots with programmed size, geometry, and density is extremely interesting since it allows the sensing of numerous (bio-)chemical species. Herein, an extremely reliable, easy to fabricate, and label-free SERS sensing platform based on metal nanoparticles (NPs) thin-film is developed by the layer-by-layer growth mediated by polyelectrolytes. A systematic study of the effect of NP composition and size, as well as the number of deposition steps on the substrate's performance, is accomplished by monitoring the SERS enhancement of 1-naphtalenethiol (532 nm excitation). Distinct evidence of the key role played by the interlayer (poly(diallyldimethylammonium chloride) (PDDA) or PDDA-functionalized graphene oxide (GO@PDDA)) on the overall SERS efficiency of the plasmonic platforms is provided, revealing in the latter the formation of more uniform hot spots by regulating the interparticle distances to 5 ± 1 nm. The SERS platform efficiency is demonstrated via its high analytical enhancement factor (≈106) and the detection of a prototypical substance(tamoxifen), both in Milli-Q water and in a real matrix, viz. tap water, opening perspectives towards the use of plasmonic platforms for future high-performance sensing applications.