Real-time Pose and Shape Reconstruction of Two Interacting Hands With a Single Depth Camera
dc.contributor.author | Mueller, Franziska | |
dc.contributor.author | Davis, Micah | |
dc.contributor.author | Bernard, Florian | |
dc.contributor.author | Sotnychenko, Oleksandr | |
dc.contributor.author | Verschoor, Mickeal | |
dc.contributor.author | Otaduy, Miguel A. | |
dc.contributor.author | Casas, Dan | |
dc.contributor.author | Theobalt, Christian | |
dc.date.accessioned | 2020-04-20T10:57:06Z | |
dc.date.available | 2020-04-20T10:57:06Z | |
dc.date.issued | 2019 | |
dc.identifier.citation | ACM Transactions on Graphics July 2019 Article No.: 49 https://doi.org/10.1145/3306346.3322958 | es |
dc.identifier.issn | 1557-7368 | |
dc.identifier.uri | http://hdl.handle.net/10115/16789 | |
dc.description.abstract | Wepresentanovelmethodforreal-timeposeandshapereconstructionof twostronglyinteractinghands.Ourapproachisthefirsttwo-handtracking solutionthatcombinesanextensivelistoffavorableproperties,namelyitis marker-less,usesasingleconsumer-leveldepthcamera,runsinrealtime, handlesinter-andintra-handcollisions,andautomaticallyadjuststothe user’shandshape.Inordertoachievethis,weembedarecentparametric handposeandshapemodelandadensecorrespondencepredictorbasedon adeepneuralnetworkintoasuitableenergyminimizationframework.For trainingthecorrespondencepredictionnetwork,wesynthesizeatwo-hand dataset based on physical simulations that includes both hand pose and shapeannotationswhileatthesametimeavoidinginter-handpenetrations. Toachievereal-timerates,wephrasethemodelfittingintermsofanonlinear least-squaresproblemsothattheenergycanbeoptimizedbasedonahighly efficient GPU-based Gauss-Newton optimizer. We show state-of-the-art resultsinscenesthatexceedthecomplexityleveldemonstratedbyprevious | es |
dc.language.iso | eng | es |
dc.publisher | ACM Transactions on Graphics | es |
dc.rights | Atribución-NoComercial-CompartirIgual 4.0 Internacional | * |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-sa/4.0/ | * |
dc.subject | Computing methodologies | es |
dc.subject | Artificial intelligence | es |
dc.subject | Machine learning | es |
dc.subject | Informática | es |
dc.title | Real-time Pose and Shape Reconstruction of Two Interacting Hands With a Single Depth Camera | es |
dc.type | info:eu-repo/semantics/preprint | es |
dc.identifier.doi | 10.1145/3306346.3322958 | es |
dc.rights.accessRights | info:eu-repo/semantics/openAccess | es |
dc.relation.projectID | TouchDesign (772738) | es |
dc.subject.unesco | 1203.04 Inteligencia Artificial | es |
Files in this item
This item appears in the following Collection(s)
-
Artículos de Revista [4496]
Except where otherwise noted, this item's license is described as Atribución-NoComercial-CompartirIgual 4.0 Internacional