Show simple item record

Approach to consensus in models of continuous-opinion dynamics: A study inspired by the physics of granular gases

dc.contributor.authorKhalil, Nagi
dc.date.accessioned2022-04-27T08:46:52Z
dc.date.available2022-04-27T08:46:52Z
dc.date.issued2021
dc.identifier.citationNagi Khalil, Approach to consensus in models of continuous-opinion dynamics: A study inspired by the physics of granular gases, Physica A: Statistical Mechanics and its Applications, Volume 572, 2021, 125902, ISSN 0378-4371, https://doi.org/10.1016/j.physa.2021.125902. (https://www.sciencedirect.com/science/article/pii/S0378437121001746)es
dc.identifier.issn0378-4371
dc.identifier.urihttp://hdl.handle.net/10115/19174
dc.description.abstractA model for continuous-opinion dynamics is proposed and studied by taking advantage of its similarities with a mono-dimensional granular gas. Agents interact as in the Deffuant model, with a parameter controlling the persuasibility of the individuals. The interaction coincides with the collision rule of two grains moving on a line, provided opinions and velocities are identified, with being the so-called coefficient of normal restitution. Starting from the master equation of the probability density of all opinions, general conditions are given for the system to reach consensus. The case when the interaction frequency is proportional to the -power of the relative opinions is studied in more detail. It is shown that the mean-field approximation to the master equation leads to the Boltzmann kinetic equation for the opinion distribution. In this case, the system always approaches consensus, which can be seen as the approach to zero of the opinion temperature, a measure of the width of the opinion distribution. Moreover, the long-time behaviour of the system is characterized by a scaling solution to the Boltzmann equation in which all time dependence occurs through the temperature. The case is related to the Deffuant model and is analytically soluble. The scaling distribution is unimodal and independent of . For the distribution of opinions is unimodal below a critical value of , being multimodal with two maxima above it. This means that agents may approach consensus while being polarized. Near the critical points and for , the distribution of opinions is well approximated by the sum of two Gaussian distributions. Monte Carlo simulations are in agreement with the theoretical results.es
dc.language.isoenges
dc.publisherElsevieres
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectContinuous-opinion modelses
dc.subjectGranular gaseses
dc.subjectMaster equationes
dc.subjectBoltzmann equationes
dc.titleApproach to consensus in models of continuous-opinion dynamics: A study inspired by the physics of granular gaseses
dc.typeinfo:eu-repo/semantics/articlees
dc.identifier.doi10.1016/j.physa.2021.125902es
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses


Files in this item

This item appears in the following Collection(s)

Show simple item record

Attribution-NonCommercial-NoDerivatives 4.0 InternacionalExcept where otherwise noted, this item's license is described as Attribution-NonCommercial-NoDerivatives 4.0 Internacional