Beta zeolite as an efficient catalyst for the synthesis of diphenolic acid (DPA) from renewable levulinic acid
Abstract
The solvent-free production of diphenolic acid (DPA) from levulinic acid (LA) and phenol is studied using readily accessible commercial acid zeolites like Beta, ZSM-5 and USY. Acid zeolites are cost-effective catalysts, and they are herein benchmarked against the sulfonic acid resins Amberlyst-15 and Nafion®, and sulfonic acidfunctionalized SBA-15 silicas. Beta zeolite with a moderate aluminum content (H-Beta 19, Si/Al=23) presents the best catalytic performance, owing to the right combination of the shape selectivity effect conferred by the BEA structure, and the adequate balance of acidity (Al content and speciation). The optimization of the reaction conditions is tackled by the response surface methodology using as optimization factors the temperature, the PhOH:LA molar ratio, and the catalyst loading. Thus, under the optimized reaction conditions (12 mmol LA, 140 ᵒC, 0.30 g catalyst loading, PhOH:LA = 6:1 mol), over 70% yield to DPA with LA conversion around 77% is obtained after 72 h. Despite the catalyst shows a progressive activity decay in successive uses because of fouling, removal of the formed organic deposits by calcination in air allows restoring the starting catalytic performance.
Description
The financial support by the projects RTI2018-094918-B-C42 (Spanish Ministry of Science and Innovation), S2018/EMT-4344 (Regional Government of Madrid), and M2181-BIOCAVI (Regional Government of Madrid and URJC), is gratefully acknowledged.
Collections
- Artículos de Revista [4552]