Show simple item record

Range-edge populations of seaweeds show niche unfilling and poor adaptation to increased temperatures

dc.contributor.authorHernández, Sandra
dc.contributor.authorGarcía, Ana G.
dc.contributor.authorArenas, Francisco
dc.contributor.authorEscribano, M. Pilar
dc.contributor.authorJueterbock, Alexander
dc.contributor.authorClerck, Olivier De
dc.contributor.authorMaggs, Christine A.
dc.contributor.authorFranco, João N.
dc.contributor.authorDíaz-Caneja Martínez, María del Brezo
dc.date.accessioned2023-09-27T11:57:07Z
dc.date.available2023-09-27T11:57:07Z
dc.date.issued2023
dc.identifier.citationHernández, S., García, A. G., Arenas, F., Escribano, M. P., Jueterbock, A., De Clerck, O., Maggs, C. A., Franco, J. N., & Martínez, B. D. C. (2023). Range-edge populations of seaweeds show niche unfilling and poor adaptation to increased temperatures. Journal of Biogeography, 50, 780–791. https://doi.org/10.1111/jbi.14572es
dc.identifier.issn1365-2699
dc.identifier.urihttps://hdl.handle.net/10115/24578
dc.descriptionPortuguese project SEEINGSHORE (NORTE-01-0145-FEDER-031893), co-financed by NORTE 2020, Portugal 2020, and the European Union through the ERDF, and by FCT through national funds. Project CGL2014-60193-P funded by the Spanish Ministry of Economy and Competitiveness.es
dc.description.abstractAimGlobal warming is affecting the distribution of species worldwide, but the level of adaptation of edge populations to warmer temperatures remains an open question. Here, we assess the thermal tolerance of populations of two habitat-forming seaweeds along their latitudinal range, using thermal niche unfilling to assess their resilience to global warming.LocationEuropean Atlantic coastline.TaxonAscophyllum nodosum (Linnaeus) Le Jolis (Phaeophyceae) and Chondrus crispus Stackhouse (Rhodophyta).MethodsWe studied the ecotypic variation in upper survival temperatures (USTs) by measuring survival and growth of adults representing populations under a gradient of seawater temperature (12–30°C). Comparing the USTs with maximum seawater temperatures obtained from satellites, we investigated safety margins and niche unfilling states, both in recent history and under future climate scenarios.ResultsUSTs (≈24°C) did not differ significantly between populations, except for higher values (27.9°C) for the northernmost populations (cold edge) of A. nodosum. Populations of both species had thermal safety margins over the last few decades (from 1982 to 2021). However, projections based on USTs showed that in several years these margins have been eliminated and will completely disappear in the Bay of Biscay under RCP4.5 and RCP6.0 2090–2100 IPCC scenarios for C. crispus and under RCP8.5 for both species, threatening the populations there.Main ConclusionsSouthern marginal populations were not better adapted to global warming than populations elsewhere. Both seaweed species tolerated higher temperatures than the ambient maxima, suggesting a thermal niche unfilling state with thermal safety margins in their recent history. However, those are being depleted by ongoing climate change and this trend is predicted to increase. Marine heat waves are important threats to these habitat-forming species, transiently reducing or even eliminating safety margins in the hottest parts of the European Atlantic coastline, contributing to explaining the distributional gap there.es
dc.language.isoenges
dc.publisherWileyes
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.titleRange-edge populations of seaweeds show niche unfilling and poor adaptation to increased temperatureses
dc.typeinfo:eu-repo/semantics/articlees
dc.identifier.doi10.1111/jbi.1457es
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses


Files in this item

This item appears in the following Collection(s)

Show simple item record

Attribution-NonCommercial-NoDerivatives 4.0 InternacionalExcept where otherwise noted, this item's license is described as Attribution-NonCommercial-NoDerivatives 4.0 Internacional